
Virtual Concept 2003 Biarritz – France November, 5-7

 1

BTF Rendering for Virtual Environments

Jan Meseth, Gero Müller, Mirko Sattler, Reinhard Klein

Institute for Computer Science II, Römerstr. 164, 53117 Bonn, Germany
Phone/Fax: +49-228-73-4191/+49-228-73-4212
E-mail: {meseth,gero,sattler,rk}@cs.uni-bonn.de

Abstract :

Virtual Environments mostly try to convey as realistic as
possible impressions. Among other senses, the eye provides the
users with the most important inputs.
Achieving visual realism typically relies on highly accurate
geometric models. Unfortunately unhandleable amounts of
triangles need to be rendered to adequately represent
mesostructure. Furthermore, sophisticated lighting calculations
need to be computed to incorporate local self-shadowing and
interreflection effects.
In current VR systems material representations like textures
and bump-maps are utilized to compensate the
abovementioned problems. While these approximations yield
sufficient results for very simple materials, they are insufficient
for more ambitious applications like cloth visualization or
interior design, which require highly realistic material
representations like the bi-directional texture function (BTF).
In this work, we compare several real-time BTF rendering
methods concerning accuracy, runtime and memory
requirements, and identify application areas for the different
techniques. In addition, we show how BTF rendering can be
integrated into scene-graph systems.
Key words : BTF rendering, realistic materials, real-time
rendering, virtual reality, scene graphs.

1- Introduction
One of the possible goals of Virtual Environments (VEs) re-
produced in Virtual Reality (VR) applications is to present the
user an as realistic impression of the virtual world as possible.
For humans, this especially concerns the visual realism of
rendered scenes. Realistic, rendered images of real-world
objects usually require complex geometric models and sophi-
sticated modeling of the objects' surface reflectance behavior.
Since the geometric complexity of an object’s mesostructure is
typically too complex to be modeled by geometric primitives,
it is usually represented by suitable material representations
that efficiently capture the surface’s reflectance properties.
In existing VR applications, such materials are typically
represented as coefficients of the well-known Phong-Model [1]
because of its simplicity and computational efficiency. The
(Lambertian) diffuse term of the model is allowed to vary

spatially via texture mapping. Even more convincing results
are achieved in combination with bump-mapping [2] or
normal-mapping techniques [3], which model the bumpiness
of surfaces by changing surface normals. Unfortunately, the
results from these techniques still lack important local effects
like view-dependent colors, self-shadowing, self-occlusion,
inter-reflections and subsurface-scattering, which are com-
monly observed in real-world materials (compare figure 1).

Fig. 1: Six views of one wallpaper from various view and
light directions. The appearance of the material changes

drastically which cannot be reproduced by simple material
representations like bump-mapped textures. The BTF [4]

correctly represents and reproduces these effects.

The need for realistic materials has increased tremendously
in the last years: Radiosity and Raytracing applications more
and more rely on sophisticated, realistic material repre-
sentations to enhance the realism in the resulting images. In
the VR community, more and more ambitious application
areas require steadily more accurate material representations.
As an example, consider the interior design of a car in VR:
objects have to be placed with great care since reflections in
the windshield disturbing the driver have to be avoided at all
costs. While simple reflectance models will fail to identify
bad as well as favorable settings since their approximation of
reality turns out too crude, highly accurate models can avoid
these problems. Therefore, they potentially shorten the time-
to-market by allowing early, well-founded judgment of the
overall appearance of virtual prototypes.

Virtual Concept 2003 Biarritz – France November, 5-7

 2

Fig. 2: Gear box model (courtesy of DaimlerChrysler) with
parts covered with lit textures and other parts lit by a Phong

model. The structure of the model appears flat.

Stand-alone applications nowadays show the possibility to
render surfaces using such high-quality and physically
plausible approximations like spatially varying bi-directional
reflectance distribution functions (BRDFs) (which describe the
reflectance properties of single surface points) or bidirectional
texture functions (BTFs) (which additionally include local self-
shadowing, self-occlusion, inter-reflections and subsurface
scattering) in real-time. As a result, the depth impression of the
material increases drastically, leading to a realistic look-and-
feel (for a comparison between the depth impression and the
look-and-feel of BTF rendering with lit textures see figures 2
and 3). As a side-effect, correct depth impressions as perceived
through local shadowing and inter-reflections significantly
improve navigation in VEs. Unfortunately, due to the pure size
of a BTF (hundreds of megabytes) real-time rendering of the
full data is currently not feasible.
In this document, we review existing analytic and linear-basis-
decomposition BTF rendering methods and provide a
comparison in terms of accuracy and resources required for
real-time rendering. Based on our results, we will identify
application areas for the different techniques. Additionally, we
will describe how BTF rendering can be integrated into the
scene graph system OpenSG and provide example results.
The rest of the document is organized as follows: After
reviewing related work in section 2, we review existing BTF
rendering methods in section 3. In section 4, we compare the
methods concerning accuracy, run-time, memory, and
preprocessing requirements and identify application areas. In
section 5, we describe the integration of BTF rendering into the
scene graph system OpenSG. We conclude in section 6 and
describe future directions of research.

 2- Related Work
Material representations have been studied intensely in
Computer Graphics for a long time already, although the focus
of research varied substantially over the years. Here, we will
concentrate on high-quality material representations for real-
time rendering.

In the area of rendering single BRDFs a lot of research has
been done in the last years and impressive results were

achieved already. Early results fitted analytic functions to the
BRDF resulting in the well-known Ward [5] and Lafortune [6]

Fig. 3: Gear box model (courtesy of DaimlerChrysler) with
parts covered with measured BTFs and other parts lit by a
Phong model. While the reflection properties of the alu-

minium material appear much more realistic, the synthetic
leather material nicely illustrates the enhanced depth

impression generated by BTF rendering.

models. Kautz and McCool [7] approximated the four-
dimensional BRDF(l, v) by a product of two two-dimensional
functions g(l) and h(v) of the light direction l and view direc-
tion v which are stored as textures and combined during the
rendering step. McCool et al. [8] improved the above method
by employing homomorphic factorization, leading to appro-
ximations with user-controllable quality features. The above
approaches were further improved by [9], [10], [11], [12] and
[13] which all enable the BRDF to be lit by image-based
lighting while relying on different approximation functions.
Unfortunately, their representations can not easily be applied
to real-time rendering of spatially varying materials.
In the context of rendering spatially varying materials,
Debevec et al. [14] presented a method for reflectance field
rendering (fixed view, varying light). They acquired and
relighted human faces exploiting a human skin reflectance
model. Malzbender et al. [15] compressed the reflectance
fields of each texel of a measured material by fitting polyno-
mials of low degree. Ashikhmin and Shirley [16] used basis
textures lit by a steerable light basis for relighting. Levoy and
Hanrahan [17] and Gortler et al. [18] simultaneously
developed methods for light field rendering (fixed lighting,
varying view). Miller et al. [19] parameterized light fields
over surfaces introducing surface light fields and employed
JPEG-like compression for the images. Following
publications [20] [21] concentrated on the application of
different data compression schemes.
BTF-rendering can be understood as rendering of spatially
varying materials under varying light and view conditions.
Due to the enormous amount of data in a BTF, only few real-
time rendering algorithms have been published so far. A
foundation was set by Kautz and Seidel [22] since they
introduced techniques for evaluating spatially varying
BRDFs on graphics hardware using a technique similar to
Kautz and McCool [7]. This technique was recently
improved by Suykens et al. [23] but even their improved
method can achieve good results only for very simple
synthetic BTFs. McAllister et al. [24] published a different
method exploiting graphics hardware that approximates the
BTF by pixelwise Lafortune models. One year earlier

Virtual Concept 2003 Biarritz – France November, 5-7

 3

already, Daubert et al. [25] published a similar approach in the
context of rendering synthetic cloth BTFs: they additionally
modulated the pixelwise Lafortune models with a view-depen-
dent factor in order to cope with self-occlusion effects. Meseth
et al. [26] proposed an improved material representation based
on reflectance fields which increases the real-time rendering
quality of materials, especially if they feature high depth
variation. A different approach was introduced by Sattler et al.
[27], who utilize principal component analysis (PCA) to
compute Eigen-Textures that are composed during runtime
based on view- and light-dependent weights. The method was
improved in terms of memory requirements and approximation
quality by an approach of Müller et al. [28]. They perform
clustering of the spatially varying BDRFs by employing local
PCA in order to compute Eigen-BRDFs.

 3- BTF Rendering
Rendering BTF textured scenes implies evaluating the exitant
radiance Lr for every surface point x following the formula

 () () ()(,) , , ,
i

r iL BTF L d
Ω

= ⋅ ⋅ ⋅∫x v x v l x l n l l (1)

where v is the view direction, Li the incident radiance, n the
surface normal, and Ωi the hemisphere over x. Please note that
the term (n·l) is included in measured BTFs already.
The six-dimensional BTF itself can be interpreted as a RGB-
texture that varies with light and view direction. A high-quality
sampling of this function consisting of 256x256 texels in size
and 81x81 poses for light and viewing direction contains more
than 1.2GB of data. Even with today's most powerful graphics
hardware real-time BTF rendering via linear interpolation of
the measured data is rather intractable, especially since VEs
typically consist of several materials. Thus, some kind of lossy
compression has to be employed that achieves high accuracy in
real-time. In the following subsections, we will briefly review
the existing techniques and emphasize their differences.

3.1 – Lafortune Lobes (LAF)

Fitting analytic functions to spatially varying materials has
been done by several publications. The least complex model
was suggested by McAllister et al. [24] and is directly based on
the Lafortune [6] model. Following their approach, the BTF is
evaluated as follows:

 () () () (),
1

, , , ,
k

d s i i
i

BTF sρ ρ
=

≈ + ⋅∑x v l x x x v l (2)

where ρd and ρs denote diffuse and specular albedo, l̃ and ṽ
denote the light and view direction transformed to the surface
point's local coordinate system, and k is the number of
Lafortune lobes

 ()
()

()
()

()
0 0

, , 0 0
0 0

n

x

y

z

C
s C

C

  
  = ⋅ ⋅  
    

x

t

x
x v l v x l

x
 (3)

fitted to the surface point x.
The model requires very few parameters to be stored per
pixel resulting in a very compact material representation and
can be rendered efficiently in real-time employing vertex-
and pixel-shaders that are nowadays available on standard
PC graphics boards. The Lafortune lobes model the variance
of luminance of the surface point while the diffuse and
specular albedos are stored as RGB color values.

3.2 – Scaled Lafortune Lobes (SLAF)

Already one year earlier, Daubert et al. [25] proposed a
slightly more complicated material representation, which is
also based on the Lafortune model. Following their proposal,
the BTF is evaluated as follows:

 () () () ()
1

, , , , ,
k

d i
i

BTF T sρ
=

 ≈ ⋅ + 
 

∑x v l x v x x v l (4)

where T(x,v) represents a lookup table storing view-
dependent scaling factors.1
Since the lookup-table is defined per pixel, significantly
more parameters have to be stored for this model but real-
time rendering employing graphics hardware is still possible.
Originally, the model was intended to independently repre-
sent the three channels of the RGB model by fitting indi-
vidual Lafortune lobes and lookup-tables for each channel. In
our comparison, we will limit this model to luminance
calculations, which requires the introduction of an additional
specular albedo per lobe (like in the LAF approach).

 3.3 – Reflectance Fields (RF)

Recently, Meseth et al. [26] published an approach to BTF
rendering based on fitting a set of reflectance fields to the
BTF. Each reflectance field describes the appearance of the
surface for a view-direction from the measurement process.
Linear interpolation is employed to cover view-directions not
in the measured set. Following their proposal, the BTF is
evaluated as follows:

 () () ()
()

, , ,v v
v N

BTF w RF
∈

≈ ⋅∑
v

x v l x x l (4)

Here, N(v ̃) denotes the set of closest view directions (which
is a subset of the measured view directions), wv denotes the
interpolation weight, and RF is the reflectance field which is
approximated by

 () () ()
()
()
()

(),

,

,
1

,

, ,

v in

v i
k

v d v v i
i

v i

a

RF b

c

ρ ρ
=

  
  

≈ + ⋅ ⋅  
      

∑

x
x

x l x x l x l

x

 (5)

with the summed term being similar to the Lafortune lobes
but excluding exitant direction and k being the number of
lobes. Please note that we use a slightly extended version of

1 Please note that the term l ̃z from the original definition is included in
formula 1 as (n·l) already.

Virtual Concept 2003 Biarritz – France November, 5-7

 4

the reflectance fields which contains diffuse albedo as well.
Since the reflectance fields are fitted per pixel and measured
view direction, the amount of parameters necessary for
evaluation of the model is even higher than for the SLAF
model but still allows real-time evaluation using the vertex-
and pixel-shaders. Like the LAF model, the lobes are intended
to compute luminance values that scale the RGB color albedo.

3.4 – Principal Component Analysis (PCA)

Another recent publication in the area of BTF rendering by
Sattler et al. [27] proposes a very different approach: instead of
fitting analytic functions to the BTF, they decompose the BTF
data into sets of principal components (called Eigen-Textures),
one set for each measured view direction. As for the
reflectance field based model, linear interpolation is employed
to cover light- and view-directions not in the measured set.
Following their proposal, the BTF is evaluated as follows:

 () () () ()
()
()

,
1

, , , ,
c

Tex
v l i i

v N i
l N

BTF w v l E vα
∈ =
∈

≈ ⋅ ⋅∑ ∑
v
l

x v l x x (6)

where - as before - N(v ̃) denotes the set of closest view
directions, N(l̃) denotes the set of closest light directions, wv,l
denotes the interpolation weight, and αi is the weight for the i-
th Eigen-Texture Tex

iE .
Depending on the number of Eigen-Textures to be used, the
number of parameters to be stored per pixel easily exceeds the
number of parameters for the reflectance field based model.
Real-time rendering is made possible by a combination of CPU
and GPU computations.

 LAF SLAF RF PCA LPCA
avg
min Proposte
max

0.0999
0.0655
0.1180

0.0825
0.0545
0.1044

0.0745
0.0494
0.0934

0.0150
0.0090
0.0237

0.0293
0.0160
0.0648

avg
min knitted

Wool
max

0.0833
0.0607
0.1158

0.0736
0.0568
0.0967

0.0590
0.0464
0.0745

0.0164
0.0097
0.0237

0.0235
0.0127
0.0359

avg
min Wallpaper
max

0.0630
0.0386
0.1020

0.0593
0.0378
0.0928

0.0459
0.0325
0.0682

0.0158
0.0089
0.0315

0.0222
0.0110
0.0430

avg
min Stone
max

0.0954
0.0392
0.1892

0.0853
0.0354
0.1814

0.0642
0.0287
0.1264

0.0166
0.0086
0.0434

0.0197
0.0099
0.0410

avg
min Alu-

minium
max

0.0572
0.0391
0.0935

0.0558
0.0389
0.0889

0.0479
0.0324
0.0782

0.0142
0.0065
0.0236

0.0109
0.0062
0.0176

avg
min synth.

Leather max

0.0499
0.0391
0.0658

0.0489
0.0388
0.0641

0.0392
0.0310
0.0529

0.0163
0.0100
0.0247

0.0172
0.0092
0.0270

Tab. 1: ε for a selection of measured materials as average,
minimum and maximum over all texels of the samples. While
the linear-decomposition methods achieve good results for all

materials, the analytic function fitting methods yield rather bad
results for highly diffuse materials like Proposte and knitted

Wool or with strong self-shadowing effects like Stone.

3.5 – Local Principal Component Analysis (LPCA)

In contrast to the PCA based method, the approach published
by Müller et al. [28] is based on Eigen-BRDFs. The BTF is
interpreted as a set of spatially varying BRDFs which is
compressed using a combination of vertex quantization and
PCA named local PCA [29] yielding clusters of Eigen-
BRDFs. Since the Eigen-BRDFs store discrete values for the
measured view- and light-directions only, this method
requires view- and light-interpolation as well. The BTF is
approximated as:

 () () () ()
()
()

, , ,
1

, , ,
c

Brdf
v l i m i m

v N i
l N

BTF w E v lα
∈ =
∈

≈ ⋅ ⋅∑ ∑
v
l

x v l x x (7)

where both the weights αi,m and Eigen-BRDFs ,
Brdf
i mE depend

on the cluster or material index m.
The number of clusters can be adjusted accordingly to the
structural complexity of the material. For structured materials
this results in significantly reduced memory requirements
compared to the previous method. Real-time rendering can
be achieved employing the vertex- and pixel-shaders.

4- Comparisons and Application Areas
In this section a comparison of the strengths and weaknesses
of the available rendering methods will be provided.
Depending on our evaluation, we will determine application
areas for the different approaches, i.e. we will give
recommendations, which specific models should be applied
to which kinds of materials assuming characteristics of the
VEs and special quality and performance criteria.

4.1 – Approximation Quality

To compare the approximation quality of the different
models, we used a simple expression, which measures the
average reconstruction error per texel:

 ()
() ()

(,)

, , , ,M
texel

BTF M
ε

∈∆

−
=

∆∑
v l

x v l x v l
x

Here, ∆ denotes the set of discrete measured view and light
directions (in our case |∆|=81x81 as mentioned in section 3),
M denotes the corresponding BTF-approximation.
Table 1 enlists ε for some of the measured materials. The
numbers show that the lobe based models (we used 2 lobes
for the evaluation) yield worse quality than the linear-
decomposition based models. The best approximation quality
is achieved by the PCA method (16 Eigen-Textures were
used per measured view direction), while the LPCA method
(32 clusters with 8 Eigen-BRDFs per cluster were used) still
achieves good quality. Although the approximation quality of
the three different lobe-based models appears very similar,
the visual impression is quite different. For most materials,
the RF method achieves pleasing results while the SLAF and
the LAF method usually fail to reproduce acceptable quality
for our sample materials (please consider figures 5 and 6).

Virtual Concept 2003 Biarritz – France November, 5-7

 5

Tab. 2: Memory requirements of the different models. For the
LPCA model, a 256x256 base texture was assumed.

4.2 – Memory Requirements

A very important factor for the use of BTF rendering methods
in VEs that usually contain several materials is the memory
consumption of the BTF data. Table 2 provides the per-texel
memory requirements listing both the number of required
values and the number of bytes required in our implementation
(the numbers are different since values either require 8 bit
fixed-point or 16 bit floating-point precision).
As expected, the better the approximation quality, the more
BTF data is required. Only the LPCA makes a notable
difference since the main amount of data required by this
method does not directly depend on the number of pixels in the
base texture (i.e. the size of the pictures taken during the
measurement process of the material) but on the number of
clusters for the local PCA. This results in a memory reduction
of about 1:10 and even 1:20 compared the RF and PCA
methods while achieving nearly similar (PCA) or even better
(RF) approximation quality.

4.3 – Run-Time Requirements

All of the above methods can be implemented to work
completely on the GPU by employing the vertex- and pixel-
shaders: while the vertex-shader programs compute local light-
and view-directions, the pixel-shader programs evaluate the
respective equation for BTF rendering. In order to provide a
future-proof comparison we enlisted the number of required
operations in table 3 in addition to an average frame-rate that
we measured for our implementation on a NVidia GeForce FX
5900 graphics board (rendering the shirt model from figure 6).
The poor frame rates strongly result from the OpenGL drivers
currently available for Windows systems, which appear not to
be optimized to handle large amounts of texture memory –
especially if floating point textures are employed. We expect
better frame-rates reflecting the numbers from table 3 for
upcoming driver versions. Please note that the frame-rates are
mainly independent of the polygon count of the rendered
models at least for the computationally expensive methods
which are completely fill-rate-limited.
In contrast to all other methods that are inherently pixel-based,
the PCA method can as well be evaluated in a per-triangle
manner rather than in a per-pixel one (see [27]). Therefore it
can easily outperform the LPCA method if the rendered
models have a small triangle count.

4.4 – Precomputation

Another distinctive feature between the methods is the required
amount of preprocessing.
The lobe-based methods demand non-linear optimization in or-
der to fit the analytical model parameters to the measured data.

 LAF SLAF RF PCA LPCA
ALU 5 34 43 5 k/4+6

fix
ed

TEX l+2 l+7 3l+6 2 k/4+3
ALU 5l+6 5l+6 12l+12 3k+3k/2+

18k/4+11
7k/2+41

pe
r l

ig
ht

TEX - - - 3k+9k/4+5 9k+11
ALU 21 50 79 160 56
TEX 4 9 12 91 88

ty
pi

ca
l

fps 100 50 25 6(12) 11

Tab. 3: Number of pixel-shader operations for the different
BTF rendering algorithms. For every algorithm, the fixed
number of operations and the additional number per light-
source are given. The operations are divided into texture

lookups (TEX) and other operations (ALU). l is the number
of lobes, k is the number of PCA components. The final line
gives a typical frame rate for a single light source. For the
PCA method, the number in parenthesis denotes the frame

rate for per-triangle evaluation (instead of per-pixel).

This task is usually performed by a Levenberg-Marquardt
algorithm implying long fitting times (several hours) while
the results heavily depend on an appropriate initialization. It
also prevents raising the quality of the models by using more
than 2-3 lobes, since fitting times become impractical.
Furthermore, we sometimes experienced pixel-artifacts
resulting from a divergent fit in under-sampled regions.
Super-sampling alleviates the problem but increases fitting
time even further.
The LPCA method also involves non-linear minimization but
the employed generalized Lloyd-algorithm turned out to be
very robust and even does not require the full dataset for
training. Depending on the number of clusters the fitting
times for the LPCA method range from one to two hours.
Since the fitting procedure of the pure PCA approach is
totally linear, it takes only a few minutes and does not
depend on any kind of initialization.

4.5 – Application Areas

As demonstrated, the presented methods differ significantly
in approximation quality and consumption of computing
power. In the following we give a short summary for each
method in order to identify application areas:

LAF/SLAF

Both models are well suited for speed-critical applications
that use many different materials, since their memory and
run-time requirements are very low. In cases of materials
with simple reflectance behavior (e.g. highly specular like
the Aluminium in figure 3) and approximately flat surface
structure, the quality of rendered images will be very convin-
cing. For more complex materials which are commonly used
in interior design, the approximation quality is too bad.

RF

The reflectance field based method mainly suffers from its
high memory requirements, the run-time requirements are
still acceptable for real-time applications. The approximation

Model Values/Texel Bytes/Texel
LAF (2 lobes) 14 22
SLAF (2 lobes) 257 508
RF (2 lobes) 894 1785
PCA (16 comp.) 3888 3888
LPCA (32 clust., 8 comp.) 85.9 170.8

Virtual Concept 2003 Biarritz – France November, 5-7

 6

quality is sufficient for nearly all materials (see figures 5 and
6), but many will still show an artificial touch, especially since
resulting images may appear too crisp due to the limited
modeling probabilities of Lafortune lobes.
The approximation quality and run-time behavior render this
technique appropriate for high-quality VR styling reviews such
as interior design. Users will have to cope with the pixel errors
described in [26] and will need to implement some memory
reduction technique if materials with low-frequency material
structure are used.

PCA

This method mostly suffers from its tremendous memory
requirements, making the method suitable only for applications
with very few materials (like virtual try-on of cloths). The
technique achieves photorealistic results if a high number of
PCA components is employed, yet the number of components
can be adjusted based on the complexity of the material, the
desired approximation quality and rendering speed. Combining
the technique with image-based lighting leads to realistic
results as experienced in the real world (compare figure 4).
The triangle based implementation described in [27] increases
the frame rates but is limited to models with low polygon count
(up to some thousand triangles).

LPCA

The LPCA method is the most generally applicable one since
its rendering speed, memory requirements and approximation
quality are adjustable by choosing appropriate numbers of clus-
ters and components. Photorealistic results can be achieved.
Nevertheless, the run-time requirements are currently too high
for real-time virtual reality applications. Yet, it can be used to
either enhance the appearance of a restricted number of virtual
objects or to easily generate high-quality images for scenarios
that require no real-time performance. Additionally, we expect
this method to achieve real-time performance in combination
with future graphics hardware.

5- Integration into OpenSG
In this section we will describe how the BTF rendering
methods can be integrated into the open source scene graph
system OpenSG [30]. The platform independent scene graph
system is based on OpenGL and was especially designed to
support multithreading, multi-pipeline and multi-machine
rendering. Its clear design makes it very easy to include the
newest features of graphics boards into it.
The basic control element for rendering in OpenSG is the
Chunk, which is used to control the OpenGL state. An imple-
mentation of BTF rendering would especially use the sub-
classes TextureChunk, CubeTextureChunk, VertexProgram-
Chunk and FragmentProgramChunk. The first two ones encap-
sulate the various texture formats offered by OpenGL (2D, 3D,
cube) whereas the second two encapsulate vertex- and frag-
ment-programs that get executed by modern graphics boards.
Since most of the above BTF rendering algorithms at least
partially rely on highly accurate data, a few new classes need
to be implemented that are currently not supported by the

above standard features of OpenSG. OpenGL offers high
precision by providing 16 bit and 32 bit floating point values
to be stored in textures. OpenSG textures are rather tightly
bound to the Image class, which unfortunately does not
support floating point formats explicitly so far. Therefore,
either the Image class needs to be extended or a new class
FloatImage needs to be implemented. Additionally, loaders
have to be implemented for the floating point file formats in
which the BTF data is stored. Finally, a new texture class has
to be implemented that encapsulates rectangular textures.
These textures allow more efficient storage by allowing
arbitrary heights and widths and – for NVidia based graphics
boards – are currently the only way to access floating point
valued textures.
The higher level primitive which would be used to finally
encapsulate the BTF rendering is the Material. For every
BTF rendering algorithm presented above, the
ChunkMaterial class should be employed. At initialization
time, the class gets handed the correct textures, fragment-
and vertex program as Chunks. For implementation details
concerning the texture formats and the fragment and vertex
programs, we refer to the respective papers, where the
methods were introduced ([24],[25],[26],[27],[28]).

Fig 4: If combined with image based lighting and correct

shadows, BTF rendering via the PCA method leads to very
realistic results.

 6- Conclusions and Future Work
In this work we presented several BTF rendering methods for
VEs. We compared these methods concerning approximation
quality, run-time, memory, and preprocessing requirements
and identified application areas for the different techniques.
A possible integration of BTF rendering into a scene-graph
system has also been proposed.
For BTF rendering, essentially two modeling paradigms have
been identified: analytic function modeling and linear basis
decompositions. Whilst due to their relatively moderate
hardware requirements analytic modeling approaches have
the capability of extending current systems by more
sophisticated material representations, we strongly believe
that statistical analysis of the large BTF dataset as done for

Virtual Concept 2003 Biarritz – France November, 5-7

 7

instance by the PCA will be an essential part of future BTF
rendering methods, since only such an analysis can account for
the large amount of redundancy in both the angular and spatial
domain of a typical BTF.
A promising approach could be the combination of classical
BRDF rendering such as [13] and LPCA regarding the special
properties of the resulting Eigen-BRDFs.
An open problem of BTF-rendering in general is the
availability of an encompassing material library. Therefore an
interesting aspect of future research will be the generation of
novel BTFs from a limited set of “base”-Materials.

 7- Acknowledgements
This work was partially funded by the European Union under
the project RealReflect (IST-2001-34744) and the German
Ministry of Education and Science (BMBF) under the project
Virtual Try-On (01IRA01A).

 8- Bibliography
[1] Phong T. Illumination for computer generated pictures. In
Communications of the ACM, 18(6), 311-317, 1975
[2] Blinn J. Simulation of wrinkled surfaces. In Computer
Graphics (SIGGRAPH ’77 Proceedings), 286-292, 1978
[3] Heidrich W. and Seidel H. Realistic, Hardware accelerated
Shading and Lighting. In SIGGRAPH 1999, 171-178, 1999
[4] Dana K., van Ginneken B., Nayra S. and Koenderink J.
Reflectance and Texture of Real World Surfaces. In IEEE
Conference on Computer Vision and Pattern Recognition, 151-
157, 1997

[5] Ward G. Measuring and modeling anisotropic reflection. In
SIGGRAPH 1992, 265-272, 1992
[6] Lafortune E., Foo S., Torrance K., and Greenberg D. Non-
linear approximation of reflectance functions. In SIGGRAPH
1997, 117-126, 1997
[7] Kautz J. and McCool M. Interactive Rendering with
Arbitrary BRDFs using Separable Approximations. In Tenth
Eurographics Workshop on Rendering, 281-292, 1999
[8] McCool M., Ang J. and Ahmad A. Homomorphic
factorization of BRDFs for high-performance rendering. In
SIGGRAPH 2001, 171-178, 2001

[9] Ramamoorthi R. and Hanrahan P. Frequency space
environment map rendering. In SIGGRAPH 2002, 517-526,
2002

[10] Sloan P., Kautz J. and Snyder J. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency
lighting environments. In SIGGRAPH 2002, 527-536, 2002

[11] Latta L. and Kolb A. Homomorphic factorization of
BRDF-based lighting computation. In SIGGRAPH 2002, 509-
516, 2002

[12] Lehtinen J. and Kautz J. Matrix Radiance Transfer. In
Symposium on Interactive 3D Graphics 2003, 57-64, 2003

[13] Sloan P., Hall J., Hart J. and Snyder J. Clustered
Principal Components for Precomputed Radiance Transfer.
In SIGGRAPH 2003, 382-391, 2003

[14] Debevec P., Hawkins T., Tchou C., Duiker H., Sarokin
W. and Sagar M. Acquiring the reflectance field of a human
face. In SIGGRAPH 2000, 145-156, 2000

[15] Malzbender T., Gelb D. and Wolters H. Polynomial
texture maps. In SIGGRAPH 2001, 519-528, 2001

[16] Ashikhmin M. and Shirley P. Steerable illumination
textures. In ACM Transactions on Graphics, 21(1), 1-19,
2002

[17] Levoy M. and Hanrahan P. Light Field Rendering. In
SIGGRAPH 1996, 31-42, 1996

[18] Gortler S., Grzeszczuk R., Szeliski R. and Cohen M.
The Lumigraph. In SIGGRAPH 1996. 43-54, 1996

[19] Miller G., Rubin S. and Ponceleon D. Lazy
Decompression of Surface Light Fields for Precomputed
Global Illumination. In 9th Eurographics Workshop on
Rendering, 281-292, June 1998

[20] Wood D., Azuma D., Aldinger K., Curless B., Duchamp
T., Salesin D. and Stuetzle W. Surface Light Fields for 3D
Photography. In SIGGRAPH 2000, 287-296, 2000

[21] Chen W., Bouguet J., Chu M. and Grzeszczuk R. Light
field mapping: Efficient Representation and Hardware
Rendering of Surface Light Fields. In SIGGRAPH 2002,
447-456, 2002

[22] Kautz J. and Seidel H. Towards Interactive Bump
Mapping with Anisotropic Shift-Variant BRDFs. In
SIGGRAPH/EUROGRAPHICS Workshop On Graphics
Hardware, 51-58, 2000
[23] Suykens F., vom Berge K., Lagae A. and Dutré P.
Interactive rendering of bidirectional texture functions. In
Eurographics 2003, 463-472, 2003

[24] McAllister D., Lastra A. and Heidrich W. Efficient
Rendering of Spatial Bi-directional Reflectance Distribution
Functions. In Graphics Hardware 2002, 78-88, 2002
[25] Daubert K., Lensch H., Heidrich W. and Seidel H.
Efficient Cloth Modeling and Rendering. In 12th
Eurographics Workshop on Rendering, 63-70, 2001
[26] Meseth J., Müller G. and Klein R. Preserving Realism in
real-time Rendering of Bidirectional Texture Functions. In
OpenSG Symposium 2003, 89-96, 2003
[27] Sattler M., Sarlette R. and Klein R. Efficient and
Realistic Visualization of Cloth. In Eurographics Symposium
on Rendering, 2003
[28] Müller G., Meseth J. and Klein R. Compression and
Real-Time Rendering of Measured BTFs using Local PCA.
To appear in Vision, Modeling and Visualization 2003.
[29] Kambhatla N. and Leen T. Dimension Reduction by
Local PCA. In Neural Computation, 9 (7), 1493-1516, 1997
[30] www.opensg.org

Virtual Concept 2003 Biarritz – France November, 5-7

 8

Fig.5: Results from the different rendering algorithms for a piece of cloth covered with wallpaper. From left to right, top first:

lit texture, LAF model, SLAF model, RF model, PCA model, LPCA model.

Fig.6: Results from the different rendering algorithms for a shirt made of knitted wool. From left to right: lit texture, LAF

model, SLAF model, RF model, PCA model, LPCA model.

