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Abstract :  

Virtual Environments mostly try to convey as realistic as 
possible impressions. Among other senses, the eye provides the 
users with the most important inputs. 
Achieving visual realism typically relies on highly accurate 
geometric models. Unfortunately unhandleable amounts of 
triangles need to be rendered to adequately represent 
mesostructure. Furthermore, sophisticated lighting calculations 
need to be computed to incorporate local self-shadowing and 
interreflection effects.  
In current VR systems material representations like textures 
and bump-maps are utilized to compensate the 
abovementioned problems. While these approximations yield 
sufficient results for very simple materials, they are insufficient 
for more ambitious applications like cloth visualization or 
interior design, which require highly realistic material 
representations like the bi-directional texture function (BTF). 
In this work, we compare several real-time BTF rendering 
methods concerning accuracy, runtime and memory 
requirements, and identify application areas for the different 
techniques. In addition, we show how BTF rendering can be 
integrated into scene-graph systems. 
Key words : BTF rendering, realistic materials, real-time 
rendering, virtual reality, scene graphs. 

1- Introduction 
One of the possible goals of Virtual Environments (VEs) re-
produced in Virtual Reality (VR) applications is to present the 
user an as realistic impression of the virtual world as possible. 
For humans, this especially concerns the visual realism of 
rendered scenes. Realistic, rendered images of real-world 
objects usually require complex geometric models and sophi-
sticated modeling of the objects' surface reflectance behavior. 
Since the geometric complexity of an object’s mesostructure is 
typically too complex to be modeled by geometric primitives, 
it is usually represented by suitable material representations 
that efficiently capture the surface’s reflectance properties. 
In existing VR applications, such materials are typically 
represented as coefficients of the well-known Phong-Model [1] 
because of its simplicity and computational efficiency. The 
(Lambertian) diffuse term of the model is allowed to vary 

spatially via texture mapping. Even more convincing results 
are achieved in combination with bump-mapping [2] or 
normal-mapping techniques [3], which model the bumpiness 
of surfaces by changing surface normals. Unfortunately, the 
results from these techniques still lack important local effects 
like view-dependent colors, self-shadowing, self-occlusion, 
inter-reflections and subsurface-scattering, which are com-
monly observed in real-world materials (compare figure 1).  

 
Fig. 1: Six views of one wallpaper from various view and 
light directions. The appearance of the material changes 

drastically which cannot be reproduced by simple material 
representations like bump-mapped textures. The BTF [4] 

correctly represents and reproduces these effects. 

The need for realistic materials has increased tremendously 
in the last years: Radiosity and Raytracing applications more 
and more rely on sophisticated, realistic material repre-
sentations to enhance the realism in the resulting images. In 
the VR community, more and more ambitious application 
areas require steadily more accurate material representations. 
As an example, consider the interior design of a car in VR: 
objects have to be placed with great care since reflections in 
the windshield disturbing the driver have to be avoided at all 
costs. While simple reflectance models will fail to identify 
bad as well as favorable settings since their approximation of 
reality turns out too crude, highly accurate models can avoid 
these problems. Therefore, they potentially shorten the time-
to-market by allowing early, well-founded judgment of the 
overall appearance of virtual prototypes. 
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Fig. 2: Gear box model (courtesy of DaimlerChrysler) with 
parts covered with lit textures and other parts lit by a Phong 

model. The structure of the model appears flat. 

Stand-alone applications nowadays show the possibility to 
render surfaces using such high-quality and physically 
plausible approximations like spatially varying bi-directional 
reflectance distribution functions (BRDFs) (which describe the 
reflectance properties of single surface points) or bidirectional 
texture functions (BTFs) (which additionally include local self-
shadowing, self-occlusion, inter-reflections and subsurface 
scattering) in real-time. As a result, the depth impression of the 
material increases drastically, leading to a realistic look-and-
feel (for a comparison between the depth impression and the 
look-and-feel of BTF rendering with lit textures see figures 2 
and 3). As a side-effect, correct depth impressions as perceived 
through local shadowing and inter-reflections significantly 
improve navigation in VEs. Unfortunately, due to the pure size 
of a BTF (hundreds of megabytes) real-time rendering of the 
full data is currently not feasible. 
In this document, we review existing analytic and linear-basis-
decomposition BTF rendering methods and provide a 
comparison in terms of accuracy and resources required for 
real-time rendering. Based on our results, we will identify 
application areas for the different techniques. Additionally, we 
will describe how BTF rendering can be integrated into the 
scene graph system OpenSG and provide example results. 
The rest of the document is organized as follows: After 
reviewing related work in section 2, we review existing BTF 
rendering methods in section 3. In section 4, we compare the 
methods concerning accuracy, run-time, memory, and 
preprocessing requirements and identify application areas. In 
section 5, we describe the integration of BTF rendering into the 
scene graph system OpenSG. We conclude in section 6 and 
describe future directions of research. 

 2- Related Work 
Material representations have been studied intensely in 
Computer Graphics for a long time already, although the focus 
of research varied substantially over the years. Here, we will 
concentrate on high-quality material representations for real-
time rendering.  

In the area of rendering single BRDFs a lot of research has 
been done in the last years and impressive results were 

achieved already. Early results fitted analytic functions to the 
BRDF resulting in the well-known Ward [5] and Lafortune [6] 

 
Fig. 3: Gear box model (courtesy of DaimlerChrysler) with 
parts covered with measured BTFs and other parts lit by a 
Phong model. While the reflection properties of the alu-

minium material appear much more realistic, the synthetic 
leather material nicely illustrates the enhanced depth 

impression generated by BTF rendering. 

models. Kautz and McCool [7] approximated the four-
dimensional BRDF(l, v) by a product of two two-dimensional 
functions g(l) and h(v) of the light direction l and view direc-
tion v which are stored as textures and combined during the 
rendering step. McCool et al. [8] improved the above method 
by employing homomorphic factorization, leading to appro-
ximations with user-controllable quality features. The above 
approaches were further improved by [9], [10], [11], [12] and 
[13] which all enable the BRDF to be lit by image-based 
lighting while relying on different approximation functions. 
Unfortunately, their representations can not easily be applied 
to real-time rendering of spatially varying materials.  
In the context of rendering spatially varying materials, 
Debevec et al. [14] presented a method for reflectance field 
rendering (fixed view, varying light). They acquired and 
relighted human faces exploiting a human skin reflectance 
model. Malzbender et al. [15] compressed the reflectance 
fields of each texel of a measured material by fitting polyno-
mials of low degree. Ashikhmin and Shirley [16] used basis 
textures lit by a steerable light basis for relighting. Levoy and 
Hanrahan [17] and Gortler et al. [18] simultaneously 
developed methods for light field rendering (fixed lighting, 
varying view). Miller et al. [19] parameterized light fields 
over surfaces introducing surface light fields and employed 
JPEG-like compression for the images. Following 
publications [20] [21] concentrated on the application of 
different data compression schemes. 
BTF-rendering can be understood as rendering of spatially 
varying materials under varying light and view conditions. 
Due to the enormous amount of data in a BTF, only few real-
time rendering algorithms have been published so far. A 
foundation was set by Kautz and Seidel [22] since they 
introduced techniques for evaluating spatially varying 
BRDFs on graphics hardware using a technique similar to 
Kautz and McCool [7]. This technique was recently 
improved by Suykens et al. [23] but even their improved 
method can achieve good results only for very simple 
synthetic BTFs. McAllister et al. [24] published a different 
method exploiting graphics hardware that approximates the 
BTF by pixelwise Lafortune models. One year earlier 
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already, Daubert et al. [25] published a similar approach in the 
context of rendering synthetic cloth BTFs: they additionally 
modulated the pixelwise Lafortune models with a view-depen-
dent factor in order to cope with self-occlusion effects. Meseth 
et al. [26] proposed an improved material representation based 
on reflectance fields which increases the real-time rendering 
quality of materials, especially if they feature high depth 
variation. A different approach was introduced by Sattler et al. 
[27], who utilize principal component analysis (PCA) to 
compute Eigen-Textures that are composed during runtime 
based on view- and light-dependent weights. The method was 
improved in terms of memory requirements and approximation 
quality by an approach of Müller et al. [28]. They perform 
clustering of the spatially varying BDRFs by employing local 
PCA in order to compute Eigen-BRDFs. 

 3- BTF Rendering 
Rendering BTF textured scenes implies evaluating the exitant 
radiance Lr for every surface point x following the formula 

 ( ) ( ) ( )( , ) , , ,
i

r iL BTF L d
Ω

= ⋅ ⋅ ⋅∫x v x v l x l n l l  (1) 

where v is the view direction, Li the incident radiance, n the 
surface normal, and Ωi the hemisphere over x. Please note that 
the term (n·l) is included in measured BTFs already. 
The six-dimensional BTF itself can be interpreted as a RGB-
texture that varies with light and view direction. A high-quality 
sampling of this function consisting of 256x256 texels in size 
and 81x81 poses for light and viewing direction contains more 
than 1.2GB of data. Even with today's most powerful graphics 
hardware real-time BTF rendering via linear interpolation of 
the measured data is rather intractable, especially since VEs 
typically consist of several materials. Thus, some kind of lossy 
compression has to be employed that achieves high accuracy in 
real-time. In the following subsections, we will briefly review 
the existing techniques and emphasize their differences. 

3.1 – Lafortune Lobes (LAF) 

Fitting analytic functions to spatially varying materials has 
been done by several publications. The least complex model 
was suggested by McAllister et al. [24] and is directly based on 
the Lafortune [6] model. Following their approach, the BTF is 
evaluated as follows:  
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where ρd and ρs denote diffuse and specular albedo, l̃ and ṽ 
denote the light and view direction transformed to the surface 
point's local coordinate system, and k is the number of 
Lafortune lobes 
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fitted to the surface point x. 
The model requires very few parameters to be stored per 
pixel resulting in a very compact material representation and 
can be rendered efficiently in real-time employing vertex- 
and pixel-shaders that are nowadays available on standard 
PC graphics boards. The Lafortune lobes model the variance 
of luminance of the surface point while the diffuse and 
specular albedos are stored as RGB color values.  

3.2 – Scaled Lafortune Lobes (SLAF) 

Already one year earlier, Daubert et al. [25] proposed a 
slightly more complicated material representation, which is 
also based on the Lafortune model. Following their proposal, 
the BTF is evaluated as follows: 

 ( ) ( ) ( ) ( )
1

, , , , ,
k

d i
i

BTF T sρ
=

 ≈ ⋅ + 
 

∑x v l x v x x v l  (4) 

where T(x,v) represents a lookup table storing view-
dependent scaling factors.1  
Since the lookup-table is defined per pixel, significantly 
more parameters have to be stored for this model but real-
time rendering employing graphics hardware is still possible. 
Originally, the model was intended to independently repre-
sent the three channels of the RGB model by fitting indi-
vidual Lafortune lobes and lookup-tables for each channel. In 
our comparison, we will limit this model to luminance 
calculations, which requires the introduction of an additional 
specular albedo per lobe (like in the LAF approach). 

 3.3 – Reflectance Fields (RF) 

Recently, Meseth et al. [26] published an approach to BTF 
rendering based on fitting a set of reflectance fields to the 
BTF. Each reflectance field describes the appearance of the 
surface for a view-direction from the measurement process. 
Linear interpolation is employed to cover view-directions not 
in the measured set. Following their proposal, the BTF is 
evaluated as follows: 

 ( ) ( ) ( )
( )

, , ,v v
v N
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v

x v l x x l  (4) 

Here, N(v ̃) denotes the set of closest view directions (which 
is a subset of the measured view directions), wv denotes the 
interpolation weight, and RF is the reflectance field which is 
approximated by 
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with the summed term being similar to the Lafortune lobes 
but excluding exitant direction and k being the number of 
lobes. Please note that we use a slightly extended version of 

                                                 
1 Please note that the term l ̃z from the original definition is included in 
formula 1 as (n·l) already. 
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the reflectance fields which contains diffuse albedo as well. 
Since the reflectance fields are fitted per pixel and measured 
view direction, the amount of parameters necessary for 
evaluation of the model is even higher than for the SLAF 
model but still allows real-time evaluation using the vertex- 
and pixel-shaders. Like the LAF model, the lobes are intended 
to compute luminance values that scale the RGB color albedo. 

3.4 – Principal Component Analysis (PCA) 

Another recent publication in the area of BTF rendering by 
Sattler et al. [27] proposes a very different approach: instead of 
fitting analytic functions to the BTF, they decompose the BTF 
data into sets of principal components (called Eigen-Textures), 
one set for each measured view direction. As for the 
reflectance field based model, linear interpolation is employed 
to cover light- and view-directions not in the measured set. 
Following their proposal, the BTF is evaluated as follows: 

 ( ) ( ) ( ) ( )
( )
( )

,
1

, , , ,
c

Tex
v l i i

v N i
l N

BTF w v l E vα
∈ =
∈

≈ ⋅ ⋅∑ ∑
v
l

x v l x x  (6) 

where - as before - N(v ̃) denotes the set of closest view 
directions, N(l̃) denotes the set of closest light directions, wv,l 
denotes the interpolation weight, and αi is the weight for the i-
th Eigen-Texture Tex

iE .  
Depending on the number of Eigen-Textures to be used, the 
number of parameters to be stored per pixel easily exceeds the 
number of parameters for the reflectance field based model. 
Real-time rendering is made possible by a combination of CPU 
and GPU computations. 

 LAF SLAF RF PCA LPCA
avg 
min Proposte 
max 

0.0999 
0.0655 
0.1180 

0.0825 
0.0545 
0.1044 

0.0745 
0.0494 
0.0934 

0.0150
0.0090
0.0237

0.0293
0.0160
0.0648

avg 
min knitted 

Wool 
max 

0.0833 
0.0607 
0.1158 

0.0736 
0.0568 
0.0967 

0.0590 
0.0464 
0.0745 

0.0164
0.0097
0.0237

0.0235
0.0127
0.0359

avg 
min Wallpaper 
max 

0.0630 
0.0386 
0.1020 

0.0593 
0.0378 
0.0928 

0.0459 
0.0325 
0.0682 

0.0158
0.0089
0.0315

0.0222
0.0110
0.0430

avg 
min Stone 
max 

0.0954 
0.0392 
0.1892 

0.0853 
0.0354 
0.1814 

0.0642 
0.0287 
0.1264 

0.0166
0.0086
0.0434

0.0197
0.0099
0.0410

avg 
min Alu-

minium 
max 

0.0572 
0.0391 
0.0935 

0.0558 
0.0389 
0.0889 

0.0479 
0.0324 
0.0782 

0.0142
0.0065
0.0236

0.0109
0.0062
0.0176

avg 
min synth. 

Leather max 

0.0499 
0.0391 
0.0658 

0.0489 
0.0388 
0.0641 

0.0392 
0.0310 
0.0529 

0.0163
0.0100
0.0247

0.0172
0.0092
0.0270

Tab. 1: ε for a selection of measured materials as average, 
minimum and maximum over all texels of the samples. While 
the linear-decomposition methods achieve good results for all 

materials, the analytic function fitting methods yield rather bad 
results for highly diffuse materials like Proposte and knitted 

Wool or with strong self-shadowing effects like Stone. 

3.5 – Local Principal Component Analysis (LPCA) 

In contrast to the PCA based method, the approach published 
by Müller et al. [28] is based on Eigen-BRDFs. The BTF is 
interpreted as a set of spatially varying BRDFs which is 
compressed using a combination of vertex quantization and 
PCA named local PCA [29] yielding clusters of Eigen-
BRDFs. Since the Eigen-BRDFs store discrete values for the 
measured view- and light-directions only, this method 
requires view- and light-interpolation as well. The BTF is 
approximated as: 

 ( ) ( ) ( ) ( )
( )
( )

, , ,
1

, , ,
c

Brdf
v l i m i m

v N i
l N

BTF w E v lα
∈ =
∈

≈ ⋅ ⋅∑ ∑
v
l

x v l x x  (7) 

where both the weights αi,m and Eigen-BRDFs ,
Brdf
i mE depend 

on the cluster or material index m. 
The number of clusters can be adjusted accordingly to the 
structural complexity of the material. For structured materials 
this results in significantly reduced memory requirements 
compared to the previous method. Real-time rendering can 
be achieved employing the vertex- and pixel-shaders. 

4- Comparisons and Application Areas 
In this section a comparison of the strengths and weaknesses 
of the available rendering methods will be provided. 
Depending on our evaluation, we will determine application 
areas for the different approaches, i.e. we will give 
recommendations, which specific models should be applied 
to which kinds of materials assuming characteristics of the 
VEs and special quality and performance criteria. 

4.1 – Approximation Quality 

To compare the approximation quality of the different 
models, we used a simple expression, which measures the 
average reconstruction error per texel: 

 ( )
( ) ( )

( , )

, , , ,M
texel

BTF M
ε

∈∆

−
=

∆∑
v l

x v l x v l
x  

Here, ∆ denotes the set of discrete measured view and light 
directions (in our case |∆|=81x81 as mentioned in section 3), 
M denotes the corresponding BTF-approximation.  
Table 1 enlists ε for some of the measured materials. The 
numbers show that the lobe based models (we used 2 lobes 
for the evaluation) yield worse quality than the linear-
decomposition based models. The best approximation quality 
is achieved by the PCA method (16 Eigen-Textures were 
used per measured view direction), while the LPCA method 
(32 clusters with 8 Eigen-BRDFs per cluster were used) still 
achieves good quality. Although the approximation quality of 
the three different lobe-based models appears very similar, 
the visual impression is quite different. For most materials, 
the RF method achieves pleasing results while the SLAF and 
the LAF method usually fail to reproduce acceptable quality 
for our sample materials (please consider figures 5 and 6). 



Virtual Concept 2003 Biarritz – France November, 5-7 

 5 

Tab. 2: Memory requirements of the different models. For the 
LPCA model, a 256x256 base texture was assumed. 

4.2 – Memory Requirements 

A very important factor for the use of BTF rendering methods 
in VEs that usually contain several materials is the memory 
consumption of the BTF data. Table 2 provides the per-texel 
memory requirements listing both the number of required 
values and the number of bytes required in our implementation 
(the numbers are different since values either require 8 bit 
fixed-point or 16 bit floating-point precision). 
As expected, the better the approximation quality, the more 
BTF data is required. Only the LPCA makes a notable 
difference since the main amount of data required by this 
method does not directly depend on the number of pixels in the 
base texture (i.e. the size of the pictures taken during the 
measurement process of the material) but on the number of 
clusters for the local PCA. This results in a memory reduction 
of about 1:10 and even 1:20 compared the RF and PCA 
methods while achieving nearly similar (PCA) or even better 
(RF) approximation quality. 

4.3 – Run-Time Requirements 

All of the above methods can be implemented to work 
completely on the GPU by employing the vertex- and pixel-
shaders: while the vertex-shader programs compute local light- 
and view-directions, the pixel-shader programs evaluate the 
respective equation for BTF rendering. In order to provide a 
future-proof comparison we enlisted the number of required 
operations in table 3 in addition to an average frame-rate that 
we measured for our implementation on a NVidia GeForce FX 
5900 graphics board (rendering the shirt model from figure 6). 
The poor frame rates strongly result from the OpenGL drivers 
currently available for Windows systems, which appear not to 
be optimized to handle large amounts of texture memory – 
especially if floating point textures are employed. We expect 
better frame-rates reflecting the numbers from table 3 for 
upcoming driver versions. Please note that the frame-rates are 
mainly independent of the polygon count of the rendered 
models at least for the computationally expensive methods 
which are completely fill-rate-limited.  
In contrast to all other methods that are inherently pixel-based, 
the PCA method can as well be evaluated in a per-triangle 
manner rather than in a per-pixel one (see [27]). Therefore it 
can easily outperform the LPCA method if the rendered 
models have a small triangle count. 

4.4 – Precomputation 

Another distinctive feature between the methods is the required 
amount of preprocessing.  
The lobe-based methods demand non-linear optimization in or-
der to fit the analytical model parameters to the measured data. 

 LAF SLAF RF PCA LPCA 
ALU 5 34 43 5  k/4+6 

fix
ed

 

TEX l+2 l+7 3l+6 2 k/4+3 
ALU 5l+6 5l+6 12l+12 3k+3k/2+

18k/4+11
7k/2+41 

pe
r l

ig
ht

 

TEX - - - 3k+9k/4+5 9k+11 
ALU 21 50 79 160 56 
TEX 4 9 12 91 88 

ty
pi

ca
l 

fps 100 50 25 6(12) 11 

Tab. 3: Number of pixel-shader operations for the different 
BTF rendering algorithms. For every algorithm, the fixed 
number of operations and the additional number per light-
source are given. The operations are divided into texture 

lookups (TEX) and other operations (ALU). l is the number 
of lobes, k is the number of PCA components. The final line 
gives a typical frame rate for a single light source. For the 
PCA method, the number in parenthesis denotes the frame 

rate for per-triangle evaluation (instead of per-pixel). 

This task is usually performed by a Levenberg-Marquardt 
algorithm implying long fitting times (several hours) while 
the results heavily depend on an appropriate initialization. It 
also prevents raising the quality of the models by using more 
than 2-3 lobes, since fitting times become impractical. 
Furthermore, we sometimes experienced pixel-artifacts 
resulting from a divergent fit in under-sampled regions. 
Super-sampling alleviates the problem but increases fitting 
time even further.  
The LPCA method also involves non-linear minimization but 
the employed generalized Lloyd-algorithm turned out to be 
very robust and even does not require the full dataset for 
training. Depending on the number of clusters the fitting 
times for the LPCA method range from one to two hours. 
Since the fitting procedure of the pure PCA approach is 
totally linear, it takes only a few minutes and does not 
depend on any kind of initialization. 

4.5 – Application Areas 

As demonstrated, the presented methods differ significantly 
in approximation quality and consumption of computing 
power. In the following we give a short summary for each 
method in order to identify application areas: 

LAF/SLAF  

Both models are well suited for speed-critical applications 
that use many different materials, since their memory and 
run-time requirements are very low. In cases of materials 
with simple reflectance behavior (e.g. highly specular like 
the Aluminium in figure 3) and approximately flat surface 
structure, the quality of rendered images will be very convin-
cing. For more complex materials which are commonly used 
in interior design, the approximation quality is too bad.  

RF 

The reflectance field based method mainly suffers from its 
high memory requirements, the run-time requirements are 
still acceptable for real-time applications. The approximation 

Model Values/Texel Bytes/Texel 
LAF (2 lobes) 14 22 
SLAF (2 lobes) 257 508 
RF (2 lobes) 894 1785 
PCA (16 comp.) 3888 3888 
LPCA (32 clust., 8 comp.) 85.9 170.8 
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quality is sufficient for nearly all materials (see figures 5 and 
6), but many will still show an artificial touch, especially since 
resulting images may appear too crisp due to the limited 
modeling probabilities of Lafortune lobes. 
The approximation quality and run-time behavior render this 
technique appropriate for high-quality VR styling reviews such 
as interior design. Users will have to cope with the pixel errors 
described in [26] and will need to implement some memory 
reduction technique if materials with low-frequency material 
structure are used. 

PCA 

This method mostly suffers from its tremendous memory 
requirements, making the method suitable only for applications 
with very few materials (like virtual try-on of cloths). The 
technique achieves photorealistic results if a high number of 
PCA components is employed, yet the number of components 
can be adjusted based on the complexity of the material, the 
desired approximation quality and rendering speed. Combining 
the technique with image-based lighting leads to realistic 
results as experienced in the real world (compare figure 4). 
The triangle based implementation described in [27] increases 
the frame rates but is limited to models with low polygon count 
(up to some thousand triangles). 

LPCA 

The LPCA method is the most generally applicable one since 
its rendering speed, memory requirements and approximation 
quality are adjustable by choosing appropriate numbers of clus-
ters and components. Photorealistic results can be achieved. 
Nevertheless, the run-time requirements are currently too high 
for real-time virtual reality applications. Yet, it can be used to 
either enhance the appearance of a restricted number of virtual 
objects or to easily generate high-quality images for scenarios 
that require no real-time performance. Additionally, we expect 
this method to achieve real-time performance in combination 
with future graphics hardware. 

5- Integration into OpenSG 
In this section we will describe how the BTF rendering 
methods can be integrated into the open source scene graph 
system OpenSG [30]. The platform independent scene graph 
system is based on OpenGL and was especially designed to 
support multithreading, multi-pipeline and multi-machine 
rendering. Its clear design makes it very easy to include the 
newest features of graphics boards into it. 
The basic control element for rendering in OpenSG is the 
Chunk, which is used to control the OpenGL state. An imple-
mentation of BTF rendering would especially use the sub-
classes TextureChunk, CubeTextureChunk, VertexProgram-
Chunk and FragmentProgramChunk. The first two ones encap-
sulate the various texture formats offered by OpenGL (2D, 3D, 
cube) whereas the second two encapsulate vertex- and frag-
ment-programs that get executed by modern graphics boards. 
Since most of the above BTF rendering algorithms at least 
partially rely on highly accurate data, a few new classes need 
to be implemented that are currently not supported by the 

above standard features of OpenSG. OpenGL offers high 
precision by providing 16 bit and 32 bit floating point values 
to be stored in textures. OpenSG textures are rather tightly 
bound to the Image class, which unfortunately does not 
support floating point formats explicitly so far. Therefore, 
either the Image class needs to be extended or a new class 
FloatImage needs to be implemented. Additionally, loaders 
have to be implemented for the floating point file formats in 
which the BTF data is stored. Finally, a new texture class has 
to be implemented that encapsulates rectangular textures. 
These textures allow more efficient storage by allowing 
arbitrary heights and widths and – for NVidia based graphics 
boards – are currently the only way to access floating point 
valued textures. 
The higher level primitive which would be used to finally 
encapsulate the BTF rendering is the Material. For every 
BTF rendering algorithm presented above, the 
ChunkMaterial class should be employed. At initialization 
time, the class gets handed the correct textures, fragment- 
and vertex program as Chunks. For implementation details 
concerning the texture formats and the fragment and vertex 
programs, we refer to the respective papers, where the 
methods were introduced ([24],[25],[26],[27],[28]). 

  
Fig 4: If combined with image based lighting and correct 

shadows, BTF rendering via the PCA method leads to very 
realistic results. 

 6- Conclusions and Future Work 
In this work we presented several BTF rendering methods for 
VEs. We compared these methods concerning approximation 
quality, run-time, memory, and preprocessing requirements 
and identified application areas for the different techniques. 
A possible integration of BTF rendering into a scene-graph 
system has also been proposed.  
For BTF rendering, essentially two modeling paradigms have 
been identified: analytic function modeling and linear basis 
decompositions. Whilst due to their relatively moderate 
hardware requirements analytic modeling approaches have 
the capability of extending current systems by more 
sophisticated material representations, we strongly believe 
that statistical analysis of the large BTF dataset as done for 
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instance by the PCA will be an essential part of future BTF 
rendering methods, since only such an analysis can account for 
the large amount of redundancy in both the angular and spatial 
domain of a typical BTF.  
A promising approach could be the combination of classical 
BRDF rendering such as [13] and LPCA regarding the special 
properties of the resulting Eigen-BRDFs.  
An open problem of BTF-rendering in general is the 
availability of an encompassing material library. Therefore an 
interesting aspect of future research will be the generation of 
novel BTFs from a limited set of “base”-Materials.  
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Fig.5: Results from the different rendering algorithms for a piece of cloth covered with wallpaper. From left to right, top first: 

lit texture, LAF model, SLAF model, RF model, PCA model, LPCA model. 

 
Fig.6: Results from the different rendering algorithms for a shirt made of knitted wool. From left to right: lit texture, LAF 

model, SLAF model, RF model, PCA model, LPCA model.

 
 


