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Abstract

Creating long animation sequences with non-trivial rep-
etitions is a time consuming and often difficult task. This is
true for 2D images and even more true for 3D sequences.
Based upon the idea of video textures we propose a sim-
ple algorithm to create new user controlled animation se-
quences based only on a few key frames by the analy-
sis of velocity and position coherence. The simplicity of
the method is achieved by carrying out the calculations
on the main principal components of the reference anima-
tion, hence reducing the dimensionality of the input data.
This also leads to significant compression. Smooth anima-
tions are ensured, using one of the two proposed blending
schemes. The method is demonstrated with several exam-
ples.

1. Introduction

The usage of computer generated images (CGI) and es-
pecially animations of humans or creatures in feature
films [8, 7, 3] and computer games is steadily increas-
ing. Animating sequences per hand is a difficult and time
consuming process. Often only short basis sequences ex-
ist and have to be extended to longer sequences (e.g. walk
of an avatar) with non trivial repetitions and can not be
solved by simple copy and paste. On the other hand creat-
ing a large motion database, as it is sometimes done in the
gaming industry, is also a costly task. In this paper we ex-
tend the idea of video textures as introduced by Schödl
et al.[20] to geometry and generalized attributes like ver-
tex normals, velocities or reflection properties. Simi-
lar to Lee et al.[16] control of the avatar can be achieved,
but in contrast to the latter we are not restricted to mo-
tion capture data.
The analysis of a given short basis animations leads to the

creation of transition matrices, which store frame-to-frame
coherence information and transition probabilities. Be-
cause the amount of data of the basis sequence might be im-
practical to store and to be used during runtime, we achieve
compression and computation of the transition matri-
ces by reducing the dimensionality of the input data, using
principal component analysis. To ensure the preserva-
tion of the motion dynamics we also split geometry related
data (vertex positions) and animation related data (ver-
tex velocities) and analyze them independently.
During runtime the algorithm creates endless or fixed
length sequences, whereat the user can control the ran-
domness and the direction of the animation. Depending
on the quality of the input data we propose two blend-
ing schemes to ensure smooth animations.

1.1. Related Work

The basic idea to search for coherence in frames of im-
age sequences was introduced by Schödl et al.[20] with
the term video textures. The goal of this work was to cre-
ate endless or fixed length image sequences with non-trivial
repetitions. E.g. candle flames, clocks or a waterfall anima-
tions were generated with their method. Modelling the tex-
tures as Markov processes simple frame-to-frame distances
are computed and mapped to transition probabilities. Sim-
ple filtering is used to preserve dynamics and also a method
for avoiding dead ends and anticipating the future is intro-
duced. Within this framework they also allow user con-
trol, e.g. a mouse-controlled fish. This was achieved by
modifying the distance function and therefore the tran-
sition probability in such a way, that the valid transi-
tions to certain frames (in the fish case towards the mouse
location) are more likely than others (any other loca-
tions in the fish tank). This work focuses only on image
based animations, not on geometry. Geometry anima-



tion in this field naturally focuses on human motion.
The sequences are driven by key frames, rule-based sys-
tems [5, 17, 4, 18, 6], control systems and dynamics
[21, 15, 10, 9] and motion capture data [11, 16]. Knowl-
edge from biomechanics and motion studies is often in-
volved to insure natural looking output. A lot of recent
work is restricted to special animation cases, e.g. div-
ing. Lee et al.[16] uses the method described with video
textures to compute coherence between motion cap-
ture data to generate new data based on several input meth-
ods. They rely on a precomputed database and focus also
on different control mechanisms for the avatar. To re-
duce the dimensionality of the input data, Alexa et al.[1]
use principal component analysis of the animation to com-
press the needed data, but are restricted to a whole given
sequence. Bowden[2] uses also PCA to simplify the mo-
tion based on feature points of the objects. While Lee et
al.[16] is based on motion capture data and Bowden [2] in-
troduces the idea to use dimensionality reduction for the
data, we want to combine video textures and PCA to al-
low the handling of arbitrary geometry animations, in-
cluding geometry attributes like normals or local reflec-
tion properties.

1.2. Algorithm Overview

Motion or animation data is often given in the form of
key frames containing all necessary information like vertex
positions, normals, connectivity information etc. Our algo-
rithm first does an analysis of the already finished animation
A of the lengthl, which can be modelled by an artist, based
on motion capture data, procedural created or obtained us-
ing any other form of data generation. In our examples we
use animations of short or medium length (l = 115, 190).
To have a diversity in the animation, the length and hence
the data amount is often much higher. But also using only
a small l can involve huge data amounts. Therefore we
first compress the animationA using a principal compo-
nent analysis (PCA) [12, 14, 19]. The motion structure is
computed, using only the weights of the eigenvectors, hence
can be computed efficiently depending only on the number
of PCA components used. The main idea is, that similari-
ties between frames are transferred into the PCA weights.
As in Scḧodl et al.[20] we compute a coherence and transi-
tion matrix, which can be used to create either infinite ran-
dom or length controlled loops during rendering, as shown
in figure 1. The rest of the paper is organized as follows.
In section 2 we describe the data analysis in detail, includ-
ing dynamics preservation and final jump map generation.
This is followed by the results section 3 in which we demon-
strate our method with examples and discuss blending be-
tween transitions and more user control possibilities.

Input motion sequence A

PCA of A into components

Analysis of PCA weightset

Find motion structure

Rendering

Random Play Generate Loops
(store coherence matrix) (store loop table)

Figure 1. Algorithm Overview. First a princi-
pal component analysis is used with the in-
put motion sequence. The motion structure
is evaluated using only the weight set. For
random play or defined loops coherence and
transitions matrices are computed, which are
later used for rendering together with the
eigenvectors of A.

2. Data Analysis

Given an animationA of l frames length and constant
connectivity, we define the vectorAi to contain all vertex
positions of the geometry for framei ∈ [0, . . . , l] ⊂ N. We
perform a PCA of these vectors, resulting in a series ofc
eigenvaluesλik and eigenvectorsFik k ∈ [1, . . . c] ⊂ N,
latter we will call eigenframes. We useλi0 = 1 and the
mean ofA asFi0. The firstc < l eigenframes approximate
any of the original frameAi in such a way that the sum of
the squares of the projection errors onto the affine subspace
spanned by{Fi0, . . . , Fic} is minimized

Ai ≈
c∑

k=0

wikFik, i = 0 . . . l. (1)



The coefficientswik = 〈Ai, Fik〉 are weights, were〈, 〉 de-
notes the standard scalar product inR3×N , whereN is the
number of vertices of the geometry.
Following the work of Scḧodl et al. [20] and Lee et al.
[16] we also model the data as a first-order Markov pro-
cess, hence the transition between states depends only on
the current state, which in our case are the given key frames
in A. The Markov process is represented as a matrixPij

storing the probability of a transition from framei to frame
j. This matrix is computed, by first computing the frame-
to-frame distancesDij , which we define by the differences
of the PCA weightswik:

Dij =
c∑

k=0

|wik − wjk| (2)

As in Scḧodl et al., the transition probabilities from framei
to framej are computed using an exponential functionPij ,
as follows:

Pij ≈ exp(−Di+1,j/σ) (3)

whereσ controls the mapping between the distance mea-
sure and the probability of the transition. Higher values for
σ allow for a greater variety at the cost of poorer transitions.
Transitions with high probabilities are the ones, where the
successor ofi is similar toj, henceDi+1,j is small. To prop-
agate the forward motion, the probability for framei + 1
should be higher than fori itself. All probabilities are nor-
malized per row, hence

∑
j Pij = 1.

2.1. Motion Dynamics

To preserve the dynamics of the motion, we also com-
pute all central velocitiesVi for all vertices per framei, i ∈
[1, . . . , l). Using the vertex positionspin stored inAi we
compute the velocityvin for vertexn and framei:

vin = ((pin − pi−1,n) + (pi+1,n − pin))/2 (4)

where we definev0n = vln = 0 for all n. Computing a
separate PCA onVi and denoting the weights asw∗

ik, were
i ∈ [0, . . . , l] is the number of the frame the velocities are
to be reconstructed for andk ∈ [0, . . . , c∗] with c∗ the num-
ber of components we get similar to equation 2:

D∗
ij =

c∗∑
k=0

|w∗
ik − w∗

jk| (5)

and finally

P ∗
ij ≈ exp(−D∗

i+1,j/σ∗) (6)

whereσ∗ is the mapping parameter respectively. We also
propose another simple method to propagate theforward

motion, that is to keep a simple list of the lastm visited
frames.m should be a fairly small number (m < 5), to pre-
vent certain motions, e.g. waving arms up and down or other
jittering. While on the one hand according to the system it-
self this is a valid motion, it might be desired to prevent this
for more natural animations.

2.2. Generate Jump map

To create the final probability map̂Pij , which we call
jump map we use position and velocity coherence as fol-
lows:

P̂ij = PijP
∗
ij (7)

To allow different emphasis on either the position coher-
ence(w), the velocity coherence(w∗) or both, we propose
the following extension to equation 7:

P̂ij = [q + (1− q)Pij ][q∗ + (1− q∗)P ∗
ij ] (8)

whereq, q∗ ∈ [0, 1] control the emphasis. Note that values
between0, 1 create a base probability for eitherq and/orq∗

to ensure that̂Pij ∈ [0, 1].
The resulting map now can be used either to generate infi-
nite random or fixed length looped sequences. Besides the
vertex positions we also include the vertex normals in the
vectorsAi. The reconstructed normals later can be used in
the rendering step for proper shading. Figure 3 shows ex-
amples forDij ,Pij ,D∗

ij ,P ∗
ij andP̂ij .

2.3. Adding vertex attributes

Besides the vertex normals, additional information could
be stored with the vectorAi, e.g. reflections properties. For
numerical stability it then might be necessary to introduce
another vectorRi to store these attributes, to obtain optimal
results from the principal component computations.

2.4. Blending Transitions

Because we allow also transitions fromi to j which have
larger differences, slight discontinuities can occur. Instead
of jumping directly from framei to j we blend with a cho-
sen amountb of blending framesi�:

i → i�1 → i�2 → . . . → i�b → j (9)

For our examples we foundb = 3 to yield smooth anima-
tions. The blending itself is done on the PCA weight set.
Let wik be the weights for thec PCA components for frame
i andwjk for framej, respectively. The blending weights



Figure 2. Two models used in this paper.
On the left side, the AVATAR model consists
of three parts and has 20948 vertices. The
SKELETON model with another shirt on the
right side consists of 12427 vertices.

wi�t k for frame i�t , t ∈ [1 . . . b] are linear interpolated be-
tween the weights fori andj:

wi�t k = wik +
wjk − wik

b(b− t + 1)
(10)

∀k, k ∈ [0 . . . c].

2.4.1. Variable Length Transitions In contrast to transi-
tions with constant length we also propose transitions with
dynamic length, depending on the Euclidean distance be-
tween the framesi and j. This is done by introducing a
smoothness parameters, which defines the minimal dis-
tance which should be covered by a single transition step.
A good starting point fors is the mean distances = d̄ be-
tween the frames in the animation sequenceA. From this it
follows that the parameterb in equation 9 is computed for
each transition as follows:

b =

∥∥∥Ãi − Ãj

∥∥∥
2

s
(11)

whereÃi is the reconstructed geometry for framei.

2.5. Motion Control

If the random or looped sequence does not satisfy the
users needs, we propose a simple but efficient way for

Figure 3. Difference matrices and jump maps
for the AVATAR (left) and SKELETON (right)
sequence. From top to bottom: Dij ,Pij ,D∗

ij ,P ∗
ij

and P̂ij . In the distance matrices black is
zero distance and green high distance. In
the probability matrices stands white for high
probabilities and black for low ones. The us-
age of both geometry and velocity data for P ∗

ij

prevents wrong jumps.



more user control. Instead of one input sequence, several
small sequences have to be created, each containing only a
specific motionsubtype, e.g.move forward. The user then
can select a target cell (blue), as illustrated in figure 4 us-
ing e.g. a joystick. The algorithm now searches for coher-
ence frames between the originating cell (red) and the tar-
get cell, interrupts the random jumping and continues with
it, when blending to an appropriate frame within the tar-
get cell. The target cell now becomes the new originating
cell. This method should work for arbitrary cell contains,
as long as there is no change of the geometry connectiv-
ity. Other control interfaces based on choice, sketching or

Figure 4. Three examples for user control of
the motion. Each cell contains PCA compo-
nents for a certain motion, e.g. move forward .
Only red (currently in) and blue (target) cells
are valid. The blue cell is chosen through
user input, e.g. via a joystick.

vision as described in Lee at al.[16] could also be applied.

3. Results

We implemented our method under Windows 2000 on
a 1.5GHz Athlon with a state-of-the art graphics accel-
erator. All computations besides the rendering are done
by the CPU. The accompanying video clips show two ex-
amples of initial animationsA and two new long se-
quences generated out of it. The rendering is done with
OpenGL and Phong shading, using the reconstructed ver-
tex normals.

3.1. PCA Reconstruction Error Analysis

The error of a reconstructed geometry depends on the
number of PCA components used. Because the usable num-
ber might be limited through speed and/or memory restric-
tions we introduce two errorsE andE∗, corresponding to
the position and to the velocity with a given number of com-
ponentsc andc∗, respectively. They are defined as follows

usingN as the number of vertices in the geometry:

E(c) =
l−1∑
i=1

∑N
n=0 ‖pin − p̃in‖2∑N

n=0 ‖pin‖2

(12)

E∗(c) =
l−1∑
i=1

1
N

N∑
n=0

‖vin − ṽin‖2

‖vin‖2

(13)

whereE is a relative error for the geometry of the object
andE∗ is expressed as a relative velocity error per vertex.
pin is the position in world coordinates andvin the cen-
tral velocity of the vertexn, respectively.̃pin and ṽin are
the reconstructed vertices and velocities. Note, that this re-
construction error makes only sense to have a quality indi-
cator for the newly generated sequence, therefore, in which
amount the PCA reconstruction error determines the simi-
larity between the original and the new sequence. These er-
rors are discussed in section 3.3. Figure 5 shows the eigen-
values for the avatar and skeleton data sets decreasing with
the number of components. We tookc = 10 for the geome-
try andc = 5 for velocity reconstruction.

3.2. PCA Compression Ratio

The number of used eigenvectors for the reconstruction
directly effects the compression ratio of the input basis se-
quence. Table 1 shows the ratio dependent of the used num-
ber of componentsc for the avatar and skeleton sequence.
Compare also table 2 for the error dependence.

c Avatar Ratio Skeleton Ratio
[MB] [MB]

- 138 1:1 75,2 1:1
1 2.6 1:53 1.4 1:54
2 4.0 1:34 1.9 1:40
4 4.6 1:30 2.8 1:27
6 6.2 1:22 3.8 1:20
8 7.7 1:18 4.7 1:16
10 9.2 1:15 5.6 1:13

Table 1. Compression ratios of the used se-
quences for several numbers of PCA compo-
nents. We found c > 8 to result in visible good
reconstructions, hence a compression ratio
of >1:15 is achievable.

3.3. Generated Sequences

We have tested the algorithm with two animation se-
quences, namely AVATAR (115 frames) and SKELETON
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Figure 5. Eigenvalues versus PCA compo-
nent number for geometry (top) and velocity
(bottom).

(190). Figure 9 shows sample frames of an animation with
several hundred frames. See also the accompanying video
for the new animations. Figures 6 and 8 show the influence
of the parameterσ andσ∗for the two basis sequences. Nor-
mally, we usedσ = σ∗. It is clearly visible, that ifσ is
too low or too high, instability occurs and only a specific
range results in proper new animations. For the avatar se-
quence we foundσ ≈ 0.05 to generate natural animations
and for the skeletonσ ≈ 0.30, respectively. The influence of
the parametersq andq∗ is shown for the AVATAR sequence
in figure 7. If only one criterium is considered, either ve-
locity q = 0.0, q∗ = 1.0 or positionq = 1.0, q∗ = 0.0, the
first 100 or 140 frames are sufficient to find good transitions
for constantσ. If both criteria are considered, valid transi-
tions are restricted to an extend, that the algorithm needs all
frames of the input sequence or even more. Table 2 shows
the reconstruction errorsE andE∗ for the animations de-
pending on the number of PCA components used.
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Figure 6. Influence of σ and σ∗ for the AVATAR
sequence. From top to bottom: σ = 0.05,
σ = 0.01 and σ = 0.30. Note the changing dy-
namics of the generated sequence.

4. Conclusions

We have presented a method to handle arbitrary ani-
mated geometry to generate new endless or fixed length se-
quences with non-trivial repetitions. The algorithm needs
only a small basis animation and little preprocessing time
to generate transition matrices, which are based on frame-
to-frame position and velocity coherence of principal com-
ponent reconstruction weights. Using the PCA also deliv-
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c Avatar(E) Avatar(E∗) Skeleton(E) Skeleton(E∗)
0 25.06 188.55 31.79 172.14
2 4.96 121.25 16.19 151.95
4 1.89 62.85 10.61 119.52
6 1.63 48.49 8.042 92.76
8 1.24 31.04 6.29 82.66
10 0.99 26.09 5.09 73.82

Table 2. E and E∗ errors computed after
equation 13. c = 0 equals to only use the
mean for reconstruction. Similar to the eigen-
values the errors drop with increasing c.

ers a good compression of the input animation for free. De-
pending on the number of components used and the maxi-
mum error allowed, the complete reconstruction and evalu-
ation of the jump map can be done at interactive to real-time
frame rates on consumer hardware. This allows the easy us-
age of this technique in the entertainment field, e.g. for com-
puter games. In practice, only the jump maps, the eigenvec-
tors and the weights for the reconstruction besides the con-
nectivity and texture coordinate information is needed on
the client computer.

4.1. Future Work

For practical usage it is worthwhile to use the increased
possibilities of modern graphics adaptors. In our case it
should be possible to do the PCA reconstruction of the mesh
directly on the GPU to avoid bus load. Also the random se-
quence generation should be possible on the GPU using tex-

ture lookups, while storing the coherence matrices as tex-
tures. To achieve even better compression results and to re-
duce the number of needed components we want to evaluate
the usage of local principal component analysis (LPCA), in-
troduced by Kambhatla et al.[13].
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Figure 8. Influence of σ and σ∗ for the SKELE-
TON sequence.



Figure 9. Sample frames of the AVATAR (top) and the SKELETON (bottom) sequence. See also the
accompanying video. Yellow dots are vertex positions, red lines are velocity vectors.


