
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

Simple and efficient compression of animation sequences

Mirko Sattler Ralf Sarlette Reinhard Klein

Institute of Computer Science II, University of Bonn, Germany

Figure 1: Sample frames of the compressed chicken sequence with 10 clusters, each colored differently.

Abstract
We present a new geometry compression method for animations, which is based on the clustered principal com-
ponent analysis (CPCA). Instead of analyzing the set of vertices for each frame, our method analyzes the set of
paths for all vertices for a certain animation length. Thus, using a data-driven approach, it can identify mesh
parts, that are "coherent" over time. This usually leads to a very efficient and robust segmentation of the mesh
into meaningful clusters, e.g. the wings of a chicken. These parts are then compressed separately using standard
principal component analysis (PCA). Each of this clusters can be compressed more efficiently with lesser PCA
components compared to previous approaches. Results show, that the new method outperforms other compression
schemes like pure PCA based compression or combinations with linear prediction coding, while maintaining a
better reconstruction error. This is true, even if the components and weights are quantized before transmission.
The reconstruction process is very simple and can be performed directly on the GPU.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

3D objects are most often represented as polygonal meshes,
which consist of vertices, edges and faces. This represen-
tation is supported by the majority of modeling tools and
graphics accelerator boards are optimized to use this form
of data for rendering. For life-like soft body animations of
this 3D data, e.g. of avatars, relative vertex positions change
over time, while the face connectivity stays constant. High-
quality soft-body animations are widely used in fields which
allow off-line production, like films. On the other hand,
this form of representation is not practical for real-time en-
tertainment or transmission over the internet with limited
bandwidth, because of the huge amount of data. Essentially,
each frame contains the whole 3D scene. Hence, efficient

compression schemes are necessary. On the one hand, there
should be significant compression. On the other hand, the
scheme should allow for reconstruction without visible arti-
facts and it should be fast enough for real-time applications.

Contributions: in this paper, we present a method to effi-
ciently compress the geometry data of animation sequences.
This is achieved by two main features. First, we reorganize
the data to form vertex trajectories. Each trajectory is stored
separately. We then cluster all trajectories using Lloyd’s
[Llo82] algorithm in combination with principal component
analysis, to segment the mesh into parts which move almost
independently. These mesh parts then can be compressed
more efficiently with lesser components than using standard
principal component analysis on the complete animation as

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

done in previous approaches. The resulting eigenvectors and
weights of the clustered PCA afterwards are compressed in
the time domain. All data is further quantized to achieve
an even better compression before transmission. Connectiv-
ity data is also compressed using standard techniques. The
method allows for a fast reconstruction on the GPU, using
programmable shaders. Another application of our method
is the user-controlled segmentation of an object, based on a
sample animation.

The rest of the paper is organized as follows. Section2 gives
an overview of related work; in Section3 the different stages
of our proposed compression method are described; in Sec-
tion 4 we present results and comparisons to other compres-
sion schemes and conclude with a discussion in Section5.

2. Previous Work

The storage and transmission over bandwidth-limited chan-
nels of large data is always a challenging problem. In the
context of computer graphics the existing methods can be di-
vided into the geometry compression of static and dynamic
meshes. A good overview of geometry compression is given
in [TR99]. Most research is done to compress static geome-
try. Here, methods to compress geometry (vertex positions)
[Dee95, TR98, KG00], connectivity [SG98, TG98, Ros99],
multi-resolution [AD01, KBG02] and progressive meshes
[Hop96, KSS00, PR00] exist. While it is possible to use all
static compression schemes also on a frame-to-frame basis
for animations, no time and space coherence can be used,
which is crucial to achieve higher compression rates for an-
imations.
To compress complete animations geometry, Lengyel
[Len99] proposes the decomposition of the mesh into sub-
parts and the description of these parts as rigid-body mo-
tion. For the segmentation process only a heuristic solution
is provided. Alexa et al. [AM00] represent animations by us-
ing principal component analysis (PCA) to reduce the data
amount. Our work is very closely related to these two pa-
pers. For example Nishino et al. [KNI01] applied PCA to
the reparameterized images of an object viewed from dif-
ferent poses and obtained so-calledeigen-texturesand Ma-
tusik et al. [WL02] compressed the pixels of captured re-
flectance fields applying PCA to 8 by 8 image blocks and
Sloan et al. [PPSS03] uses CPCA for efficient radiance trans-
fer computation. Karni et al. [KG04] use the principal com-
ponent idea and also linear prediction coding to exploit tem-
poral coherence. Briceno et al [BSM∗03] use geometry im-
ages [GGH02] to compress every frame of an animation. Re-
construction artifacts can occur due to sampling problems. A
costly re-meshing process is also involved and reconstruc-
tion is only fast for small image sizes. The Dynapack al-
gorithm as introduced by Ibarria and Rossignac [IR03] ex-
ploits inter-frame coherence and uses two predictors to en-

code the mesh motion. Most recently, Guskov et al. [GK04]
uses wavelets to exploit parametric coherence in the anima-
tion sequences. While a good compression performance is
achieved, a multi-resolution transform is needed and only
inter-frame coherence is used. Due to the usage of wavelets,
the reconstruction may become computationally costly de-
pending on the used filter kernels. We also give a brief
overview of automatic mesh segmentation methods, because
our method uses segmentation to achieve better compres-
sion results. Besides the spectral compression method by
Karni et al. [KG00], mesh segmentation was rarely used to
compress animations sequences. For static geometry several
promising approaches exist. For instance, the algorithm of
Katz et al. [KT03] uses geodesic distance and convexity in-
formation. Shlafman et al. [STK02] propose decomposition
by assigning faces to a patch based on physical and angular
distances, to allow the metamorphosis between two meshes.
GPU-based mesh segmentation was shown in [JDH04]. Be-
cause our segmentation metric is based on the motion of a
vertex present in the animation, most of the above methods
are not applicable to our problem.

3. Algorithm Overview

This section describes the new compression method in de-
tail. An overview of the data flow is given in Figure2. In the
following we assume a triangle mesh withV vertices and
an animation withF frames in length. We further assume
constant mesh connectivity. This is true for most animations
based on bones models, space warps or simulation results.

3.1. Animation Representation

Several methods exist to create 3D animations in computer
graphics. Simple animations can be described with equations
which model the trajectories of the vertices. But to achieve
highly complex motion, the classical approaches involves
human animators, who first model a character or object and
then create key-frames, using techniques like inverse kine-
matic. To achieve more realistic motion, physically based
simulation, which describe, for instance, cloth or hair be-
havior are also incorporated. Based on basic animations and
some constraints, new motions can be synthesized. For film
and entertainment, motion capturing systems with real ac-
tors are used to animate the bones model of a virtual ob-
ject. Therefore, assuming a constant face connectivity, ani-
mations can be thought of a matrixA which stores the vertex
positions for each frame in its columns:

A =

 v11 · · · v1F
· · · · · · · · ·
vV1 · · · vVF

 =

 T1
· · ·
TV

 (1)

with V as the number of vertices,F as the number of frames
in the animation andT as the vertex trajectories. The main

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

ENCODER DECODER

pca-based
clustering

of
trajectories

quantization

PCA1

PCA2

...

PCAk

connectivity
data

animation
vertex data

standard connectivity compression

Transmission
GPU

connectivity
reconstruction

frame
reconstruction

cluster index

PCA data

Figure 2: Simplified data flow of our method.

goal is to compress this data to save memory and bandwidth.
If a lossy compression scheme is used, the reconstruction of
the matrix should be done with the least error with regard to
the positions of the vertices during the animation.

3.2. Mesh Segmentation and Linear Basis
Decomposition

Given an animation e.g. based on physical simulation, the
vertex paths through space are different and the relative re-
lationship between the paths might show a highly nonlin-
ear behavior. In this case, dimensionality reduction of the
complete animation using PCA, which projects the sequence
onto a linear subspace, will not be very efficient. Neverthe-
less, many high-dimensional data sets show a local linear be-
havior. That is, some vertex trajectories lie similar in space,
meaning that their vertices move similar within the anima-
tion. The main idea of our proposed method is to consider
the vertex trajectories for compression and not the single
frames, using the local linear data assumption. Therefore,
instead of clustering the frames (matrixA), we propose to
cluster the trajectories (matrixAT). It should be the goal, to
find clusters of local linear data, which is equivalent to a seg-
mentation of the animated mesh into parts. The efficiency of
the final compression relies on these clusters of the data.

As pointed out in the previous work, Lengyel [Len99] pro-
poses a heuristic solution for the segmentation, but a bet-
ter segmentation can be obtained using data analysis tech-
niques.

Therefore, we apply a clustered PCA to the animation data,
which was introduced by Kambhatla and Leen [NT97] to
the machine-learning community in competition to classical
non-linear/neural-network learning algorithms. It combines
clustering and PCA using the reconstruction error as met-
ric for choosing the best cluster. In contrast to more sophis-
ticated non-linear dimensionality reduction techniques, this
method introduces no additional run-time cost to the recon-

struction apart from a simple cluster look-up. The clustering
in the encoding stage (see Figure2) of the algorithm can be
summarized as follows:

1. Initialize k cluster-centersr j randomly chosen from the
dataset. Assign a collection ofc unity basis vectorsei, j to
each cluster.

2. Partition the dataset into regions by assigning each data-
vector to its closest center. The distance to a centerr j is
given by squared reconstruction error:

||x− x̃ j ||2 = ||x− r j −
c

∑
i=1

〈x− r j ,ei, j〉ei, j ||2

wherex is the original and ˜x j the reconstructed data vec-
tor.

3. Compute new centersr j as the mean of the data in the
region j.

4. Compute a new set of basis-vectorsei, j per region, i.e.
perform a PCA in each region.

5. Iterate steps 2.-4. until the change in average reconstruc-
tion error falls below a given threshold.

After this process, we have a cluster indexIm, m∈ [1, . . . ,V],
which stores for each original vertex trajectoryTm the num-
ber of the cluster, it belongs to.

We also getc eigenvectors per cluster, which we will call
Eigentrajectories. These EigentrajectoriesEi j , j ∈ [1, . . . ,c]
were generated in the last step 4 of the clustering process.

Furthermore, The firstc Eigentrajectories approximate any
of the original trajectories in their clusteri in such a way
that the sum of the squares of the projection errors onto the
affine subspace spanned by{EIm1, . . . ,EImc} is minimized

Tm≈
c

∑
h=1

wImhEImh (2)

The coefficientswImh = 〈Tm,EImh〉 are weights for the cluster
Im, were〈,〉 denotes the standard scalar product inR3×F .

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

Figure 3: Clustering based on animation data. Right to left:
cow with 5, dancewith 6 andhead with 3 clusters, each
colored differently.

Using this method, for the given number of clusters, guaran-
tees the best reconstruction error per cluster for a given num-
ber of components. The clustering itself heavily depends on
the given model and the animation. While, on the one hand,
it is possible to let the user choose the number of clusters
at the onset, based on visual perception, it is also possible,
to have an iterative determination ofk. The desired maximal
reconstruction error or the available bandwidth for transmis-
sion can be used as a stopping criterium for increasingk,
starting withk = 1, similar to [KT03]. Clustering usually is
in the order of minutes (see Tab.3). Therefore, the computer
can search for an optimalk.

Results for the segmentation for some of the test animations
can be seen in Figure 1 and3. Each of the clusters is coded in
a different color. Note the segmentation of thePOSERhead,
which is animated by facial expressions. It shows clearly the
three main parts (eye and mouth region, rest of the head).

In the case ofF � V, we always rearrange the matrices in
a way, that the covariance matrix has the size of the smaller
part of (F,V), as shown in [NdS01]. Furthermore, due to the
offline nature of this preprocessing step, out-of-core tech-
niques implemented in packages likeLAPACK [LAP] are
used.

3.3. Error Measurement

To compare the performance of our method with regard
to compression and reconstruction quality, we introduce a
distortion factorda similar to [KG04], which measures the
quality of the vertex position reconstruction for the complete
animation.da is defined as follows:

da = 100
||B− B̂||

||B−C(B)||

where B is a matrix with the dimensions 3V ×F containing
the original animation sequence.B̂ is the same matrix after
the compression and reconstruction stage.C(B) is a matrix
in which each column consists of the average vertex posi-
tions for all frames.

Influence of c*

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 20 40 60 80 100 120 140 160 180

components

d a

Figure 4: Influence of different numbers of components c∗

on the reconstruction quality da for the chicken sequence.

We also compute the per-frame distortiondf which is de-
fined as the L2 norm of all original and reconstructed vertex
positions of a frame.

3.4. Compression of Eigentrajectories

Note, that the eigentrajectoriesEi j , we computed above are
still of the lengthF . To further compress this data, we again
apply a PCA on these vectors. This results inc∗ new eigen-
vectors and the corresponding eigenvalues. This is especially
useful for long sequences. In contrast to the first step we
now compress the time axis. After this second compression
step, we quantize the new eigenvectors and weights for trans-
mission, which is discussed in the next subsection. Using
more thanc∗ = 100 components gives nearly the same error
than without time domain compression (da = 0.03). Figure
4 shows the influence of different numbers of components
c∗ on the reconstruction errorda of the complete chicken
animation (k = 10,c = 20). Figure5 shows the per frame
distortiondf .

3.5. Quantization

Before storing or transmitting data, quantization is a com-
mon technique to reduce the floating-point data (32 or 64
bits), by using onlyq bits to represent a float value. This is
done via a normalization process, which computes a tight,
axis-aligned bounding box for the geometry. In the case of
an animation, one first computes the center of gravity of each
frame and chooses the largest occurring bounding box for
all frames. As pointed out by some authors [KG04, Ros04]
q = 12 bits can be treated as "lossless" compression with re-
gard to visual quality as seen in the top of Figure7. But to
operate with full precision, we compute the PCA on the orig-
inal floating-point data and quantize only the components
and weights as shown in the dataflow in Figure2. This is

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

Influence of c*

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000
1 51 101 151 201 251 301 351

Frame Number

d f

100

125

175

0

Figure 5: Influence of different numbers of components c∗

on the reconstruction quality per frame df for the chicken
sequence.

Reconstruction errors vs. quantization
chicken

0.010

0.100

1.000

10.000

100.000

0 4 8 12 16 20 24 28 32

quantization (bits)

d a

qc=32;qw=32 qc=12;qw=16 qc=32;qw=12 qc=16;qw=32 qc=12;qw=32

Figure 6: Reconstruction errors for different combinations
of qc and qw for thechickensequence.

done separately with two bit valuesqc andqw for the compo-
nents and the weights respectively before transmitting them.
The bottom of Figure7 shows the reconstruction samples for
different quantization levels (top row) and different values
for qc andqw (bottom row) for the chicken sequence with
20 clusters and 10 components. As shown in Figure6 the
reconstruction errorda is more effected by the quantization
of the components, than by the quantization of the weights.
In practice, we suggest to use at least 18 bits for bothqc and
qw.

3.6. Decompression

After transmission, we first decompress the Eigentrajecto-
ries. After this, we havek clusters, each withc PCA com-
ponents and the corresponding weights, which we obtained
after the clustering process. Now we are able to reconstruct

Figure 7: Top row: Different quantization lev-
els (q=32,12,10,8,6 bits) of the original data for
the chicken sequence .Bottom row: Reconstruc-
tion results using different quantization for qc and qw
(qc=12,qw=12/qc=12,qw=32/qc=32,qw=12/qc=16,qw=16).
Color-coded error to original 32bit frame. See text for de-
tails.

for all verticesj do
vec4 newVertexPos;

float clusterIdx = texture2D(texClusterIdx, texCoord[j]);

vec4 weights = texture2D(texWeights, texCoord[clusterIdx]);

newVertexPos.xyz = texture3D(texClusterMean, texcoord[clusterIdx]);

for i = 1 toNumComponentsdo
newVertexPos +=

weights[i]*texture3D(texClusterComponents, texcoord[clusterIdx]);

end for
glPosition = glModelViewProjectionMatrix * newVertexPos;

end for

Figure 8: Pseudocode to compute new vertex positions in a
shader program for decompression

each trajectory of the animation, hence each frame. In addi-
tion, we also have the cluster indexIm.

As shown in Figure2 the reconstruction can easily be done
on the GPU, because all data can be stored in graphics mem-
ory and only simple matrix multiplications have to be com-
puted to reconstruct a certain frame. This is easily be done
within a shader program [ARB].

Figure8 gives an overview of the GPU shader program writ-
ten in GLSL pseudocode for decompression. The cluster in-
dex and the weights are stored in 2D textures, while the PCA
data is stored in 3D Textures. After several lookups the new
vertex position is calculated.

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

name vertices V triangles T frames F

chicken 3030 5664 400

cow 2904 5804 204

dance 452 570 1733

dolphin 6179 12337 101

face 539 1042 10001

head 8172 15974 500

Table 1: Used animation sequences.

4. Results

The following section describes the data used and introduces
some error measurements, followed by an evaluation of the
method and the comparison to other compression schemes.

4.1. Data Sets

All of the following data sets are animations of polygonal
meshes and the number of faces and their connectivity does
not change over time. The animation was done either by
hand or by the usage of motion capture data or pre-generated
basic facial expressions. Table1 shows basic information for
all animations sequences. Some of the animations can be
viewed in the accompanying video and sample frames can
be seen in Figure11.

4.2. Compression & Reconstruction Results

For the evaluation of our method we use the reconstruction
error metrics described in Section3.3and thebpvf (bits per
vertex per frame) unit for bandwidth usage measurements.
Because we have to transmit the face connectivity in before-
hand aspayload, we distribute the data over the whole ani-
mation for comparison reasons. Note, that we use theEdge-
breaker[Ros99] method with freely available source code,
to compress the connectivity information. In the worst case
we then need 6V bits to store the data. Table2 summarize
the compression results for different bpvf for the used ani-
mations. Note, thatc∗ is used only for the long sequences.

4.3. Timings

The compression was done using an AMD Athlon64 XP
3200+ with Windows 2000. As graphics adapter an ATI
Radeon X800pro was used. Table3 shows compression and
decompression timings for several test animations. Com-
pression times are in seconds for the clustering, principal
component analysis and saving. Frames per second (FPS) for
display while reconstructing. It seems, that the performance
heavily depends on the number of clusters used.

name bpvf da c∗ c k

chicken 8.7 0.002 60 2
4.7 0.076 20 10
2.8 0.139 20 5

cow 7.4 0.16 40 5
3.8 0.50 20 5
2.0 1.47 10 5

dolphin 7.1 0.024 20 2
4.1 0.033 10 4
2.1 0.168 10 2

head 7.4 0.003 40 10
5.3 0.003 60 2
2.5 0.083 20 5

dance 6.1 0.21 - 5 10
4.9 0.25 40 5 10
4.3 0.48 35 5 10
2.5 0.87 - 2 10
1.9 2.06 15 2 10
1.3 4.57 10 2 10

face 10.0 0.013 - 5 20
5.1 0.023 50 5 20
5.0 0.029 - 5 10
2.5 0.038 25 5 10
1.5 0.058 15 5 10

Table 2: Compression results.

name clustersk componentsc t (sec) FPS

chicken 2 60 258 105
chicken 10 20 206 214
chicken 5 20 395 215

cow 5 40 75 145
cow 5 20 59 218
cow 5 10 55 284

face 10 40 2730 648
face 2 40 979 654
face 5 20 1320 865

Table 3: Compression/Decompression timings for several
animations.

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

4.4. Comparison

In comparison to other approaches our new method performs
very well. We compare our method to the wavelet (AWC)
[GK04] and linear prediction coding (KG) [KG04]. The val-
ues were obtained from the corresponding papers. Figure10
shows a graphical result for the cow sequence. Depending
on the quantization level we used (32 or 18 bits for the PCA
Components), we come close or even outperform all other
methods. The right side of Figure10uses fixed bpvf to visu-
alizedf . We used k=5, c=40; k=10, c=20 and k=5, c=20 for
df =7.4, 5.7 and 3.8 respectively. Besides this, our method
outperforms the KG method for long sequences also, as can
be seen in Figure9.

To calculate the bpv per frame (bpvf) we used the following
equation:

bpv f =
6V +qckc3F +qwcV +5V

FV
(3)

with V and F as the number of vertices and frames of the
animation. The first part of the equation encodes the connec-
tivity, the second part the PCA data (withk as the number of
clusters andc as the number of components), the third part
the PCA weights and the last part represents the cluster index
encoded with 5 bits. The cluster index can be avoided, by re-
arranging the data in a way, that all trajectories are ordered
by the cluster number. Then, equation3 becomes:

bpv f =
6V +qckc3F +qwcV

FV
(4)

using somestopbitsto indicate the cluster change. Note, that
the latter will not allow for random access the trajectories,
which might become to costly during decompression. With
compression of the Eigentrajectories for long sequences4
becomes:

bpv f∗ =
6V +qckcc∗+qw3Fc∗+qwcV

FV
(5)

usingc∗ < F .

5. Discussion and Conclusions

To achieve efficient compression on the 3D data of a soft-
body animation sequence, the exploitation of the spatial and
time correlation of the data is crucial. Our new method uses
clustered principal component analysis to separate the given
geometry into coherent parts, in regard to the animation. We
also do not treat the animation as a series of static meshes
and frames, but rearrange the data to analysis the trajectory
of each vertex individually. Compression is then done on the
trajectories of all vertices of a cluster. Compression rates
of the sub-meshes outperform simple principal component
compression or combination with linear prediction encoding
and for some animation types even wavelet-based methods.
If the number of frames is much higher than the number of
vertices in the animation, further PCA-based compression
in the time domain of the Eigentrajectories is performed.

Our method requires no meta knowledge besides the geom-
etry data, e.g. no bones model information. Given sufficient
animation data, it allows for automatic segmentation of the
mesh. Memory problems which might can occur during the
principal component analysis, can be handled using out-of-
core methods. Reconstruction is easily done on the GPU.
We also want to combine our method with linear prediction
coding, which might lead to even higher compression rates.
As shown in the result section, using a different number of
clusters in combination with the distortion error, the method
might be able to "predict" a meaningful number of parts for
the segmentation of the object. In this version of the algo-
rithm the number of components per cluster is fixed. Given
a global distortion error, we also want to change the number
of components individually per cluster and apply a cluster-
wise different quantization on a local basis. Additionally, we
want to perform a complexity analysis with more animations
to evaluate how our approach scales.

Acknowledgements

The authors would like to thank their colleagues Gabriel
Zachmann and Gero Müller for fruitful discussions and help
with coding and Jutta Adelsberger and Michael Kusak for
helpful hints. Thechickensequence is property of Microsoft
Inc. and was kindly provided by John Snyder.POSERR©

was used for the creation of the dancing sequence with mo-
tion capture data and the face animation with expressions.
The cow animation was created by Matthias Müller (ETH
Zürich). Thedolphin and face sequences were kindly pro-
vided by Zachi Karni.

References

[AD01] ALLIEZ P., DESBRUN M.: Progressive compres-
sion for lossless transmission of triangle meshes. In
Proceedings of the 28th annual conference on Computer
graphics and interactive techniques(2001), ACM Press,
pp. 195–202.

[AM00] ALEXA M., MÜLLER W.: Representing anima-
tions by principal components.Computer Graphics Fo-
rum 19, 3 (2000).

[ARB] ARB: http://oss.sgi.com/projects/ogl-
sample/registry/.

[BSM∗03] BRICENO H. M., SANDER P. V., MCM IL -
LAN L., GORTLER S., HOPPEH.: Geometry videos: a
new representation for 3d animations. InProceedings of
the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation(2003), Eurographics Association,
pp. 136–146.

[Dee95] DEERING M.: Geometry compression. InPro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques(1995), ACM Press,
pp. 13–20.

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

[GGH02] GU X., GORTLER S. J., HOPPEH.: Geometry
images. InProceedings of the 29th annual conference
on Computer graphics and interactive techniques(2002),
ACM Press, pp. 355–361.

[GK04] GUSKOV I., KHODAKOVSKY A.: Wavelet comr-
pession of parametrically coherent mesh sequences.Eu-
rographics Symposium on Computer Animation 2004
(2004).

[Hop96] HOPPEH.: Progressive meshes. InProceedings
of the 23rd annual conference on Computer graphics and
interactive techniques(1996), ACM Press, pp. 99–108.

[IR03] IBARRIA L., ROSSIGNAC J.: Dynapack: space-
time compression of the 3d animations of triangle meshes
with fixed connectivity. InProceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Ani-
mation(2003), Eurographics Association, pp. 126–135.

[JDH04] JESSED. HALL J. C. H.: Gpu acceleration of
iterative clustering.Manuscript accompanying poster at
GP2̂: The ACM Workshop on General Purpose Comput-
ing on Graphics Processors, and SIGGRAPH 2004 poster
(2004).

[KBG02] KARNI Z., BOGOMJAKOV A., GOTSMAN C.:
Efficient compression and rendering of multi-resolution
meshes. InProceedings of the conference on Visualization
’02 (2002), IEEE Computer Society, pp. 347–354.

[KG00] KARNI Z., GOTSMAN C.: Spectral compression
of mesh geometry. InSiggraph 2000, Computer Graphics
Proceedings(2000), Akeley K., (Ed.), ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, pp. 279–286.

[KG04] KARNI Z., GOTSMAN C.: Compression of soft-
body animation sequences.Computer and Graphics 28
(2004), 25–34.

[KNI01] K. N ISHINO Y. S., IKEUCHI K.: Eigen-texture
method: Appearance compression and synthesis based on
a 3d model.IEEE Trans. on Pattern Analysis and Machine
Intelligence 23, 11 (2001), 1257–1265.

[KSS00] KHODAKOVSKY A., SCHRÖDER P.,
SWELDENS W.: Progressive geometry compression.
In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques(2000), ACM
Press/Addison-Wesley Publishing Co., pp. 271–278.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposi-
tion using fuzzy clustering and cuts.ACM Trans. Graph.
22, 3 (2003), 954–961.

[LAP] LAPACK: http://www.netlib.org/lapack/.

[Len99] LENGYEL J. E.: Compression of time-dependent
geometry. InProceedings of the 1999 symposium on In-
teractive 3D graphics(1999), ACM Press, pp. 89–95.

[Llo82] LLOYD S. P.: Least square quantization in pcm.
IEEE Transactions on Information Theory 28, 2 (1982),
129–137.

[NdS01] NAVARRETE P., DEL SOLAR J. R.: Eigenspace-
based recognition of faces: Comparisons and a new ap-
proach. InProceedings of the 11th International Confer-
ence on Image Analysis and Processing(2001), p. 42.

[NT97] N.KAMBHATLA , T.K.LEEN: Dimension reduc-
tion by local pca.Neural Computation, 9(1997), 1493–
1516.

[PPSS03] PETER-PIKE SLOAN JESSEHALL J. H., SNY-
DER J.: Clustered principal components for precomputed
radiance transfer.ACM Transactions on Graphics 22, 3
(2003), 382–391.

[PR00] PAJAROLA R., ROSSIGNACJ.: Compressed pro-
gressive meshes.IEEE Transactions on Visualization and
Computer Graphics 6, 1 (2000), 79–93.

[Ros99] ROSSIGNACJ.: Edgebreaker: Connectivity com-
pression for triangle meshes.IEEE Transactions on Visu-
alization and Computer Graphics 5, 1 (/1999), 47–61.

[Ros04] ROSSIGNAC J.: Surface simplification and 3D
geometry compression; Chapter 54 in Handbook of Dis-
crete and Computational Geometry, 2nd ed. Editors: J. E.
Goodman and J. O’Rourke, 2004.

[SG98] S. GUMHOLD W. S.: Real time compression of
triangle mesh connectivity.ACM SIGGRAPH ’98 Pro-
ceedings(1998), 133–140.

[STK02] SHLAFMAN S., TAL A., KATZ S.: Metamor-
phosis of polyhedral surfaces using decomposition, 2002.

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh com-
pression. InGraphics Interface(June 1998), pp. 26–34.

[TR98] TAUBIN G., ROSSIGNACJ.: Geometric compres-
sion through topological surgery.ACM Transactions on
Graphics 17, 2 (1998), 84–115.

[TR99] TAUBIN G., ROSSIGNAC J.: 3d geometry com-
pression.Siggraph Course Notes, 21 (1999).

[WL02] W.MATUSIK H.-P.PFISTER A. P. R.,
L.M CM ILLAN : Image-based 3d photography using
opacity hulls. ACM Transactions on Graphics 21, 3
(2002), 427–437.

c© The Eurographics Association 2005.

M. Sattler, R. Sarlette & R. Klein / Simple and efficient compression of animation sequences

Face sequence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 4.0 6.0 8.0 10.0 12.0
bpvf

d a

KG
AWC
CPCA

Figure 9: . Comparison of our method with other algorithms for the face sequence.

Cow sequence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 10.0 20.0 30.0 40.0 50.0
bpvf

d a

KG
AWC
LPCA32
LPCA18

df for cow sequence

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

0 50 100 150 200
frame number

d f
7.4 bpvf
5.7 bpvf
3.8 bpvf

Figure 10: . Left: Cow sequence comparison to other methods. Our CPCA method with 18 bit PCA quantization yields very
good results. Left: df for the cow sequence with different bpvf settings.

Figure 11: Sample frames of the used animations. From left to right:chicken, cow, dance, dolphin,faceandhead.

c© The Eurographics Association 2005.

